L(s) = 1 | + (−0.707 − 0.707i)2-s + (1.53 − 0.796i)3-s + 1.00i·4-s + (2.02 + 2.02i)5-s + (−1.65 − 0.524i)6-s + (2.53 + 2.53i)7-s + (0.707 − 0.707i)8-s + (1.73 − 2.44i)9-s − 2.85i·10-s + (2.97 − 2.97i)11-s + (0.796 + 1.53i)12-s − 3.58i·14-s + (4.71 + 1.49i)15-s − 1.00·16-s − 3.45·17-s + (−2.95 + 0.507i)18-s + ⋯ |
L(s) = 1 | + (−0.499 − 0.499i)2-s + (0.888 − 0.459i)3-s + 0.500i·4-s + (0.903 + 0.903i)5-s + (−0.673 − 0.214i)6-s + (0.959 + 0.959i)7-s + (0.250 − 0.250i)8-s + (0.577 − 0.816i)9-s − 0.903i·10-s + (0.895 − 0.895i)11-s + (0.229 + 0.444i)12-s − 0.959i·14-s + (1.21 + 0.387i)15-s − 0.250·16-s − 0.837·17-s + (−0.696 + 0.119i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.956 + 0.290i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(2.251064563\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.251064563\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.707 + 0.707i)T \) |
| 3 | \( 1 + (-1.53 + 0.796i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (-2.02 - 2.02i)T + 5iT^{2} \) |
| 7 | \( 1 + (-2.53 - 2.53i)T + 7iT^{2} \) |
| 11 | \( 1 + (-2.97 + 2.97i)T - 11iT^{2} \) |
| 17 | \( 1 + 3.45T + 17T^{2} \) |
| 19 | \( 1 + (1.58 - 1.58i)T - 19iT^{2} \) |
| 23 | \( 1 + 3.03T + 23T^{2} \) |
| 29 | \( 1 + 2.01iT - 29T^{2} \) |
| 31 | \( 1 + (1.21 - 1.21i)T - 31iT^{2} \) |
| 37 | \( 1 + (-3.42 - 3.42i)T + 37iT^{2} \) |
| 41 | \( 1 + (-5.61 - 5.61i)T + 41iT^{2} \) |
| 43 | \( 1 - 1.95iT - 43T^{2} \) |
| 47 | \( 1 + (0.957 - 0.957i)T - 47iT^{2} \) |
| 53 | \( 1 + 7.22iT - 53T^{2} \) |
| 59 | \( 1 + (7.27 - 7.27i)T - 59iT^{2} \) |
| 61 | \( 1 - 0.274T + 61T^{2} \) |
| 67 | \( 1 + (-3.00 + 3.00i)T - 67iT^{2} \) |
| 71 | \( 1 + (7.80 + 7.80i)T + 71iT^{2} \) |
| 73 | \( 1 + (10.0 + 10.0i)T + 73iT^{2} \) |
| 79 | \( 1 - 1.58T + 79T^{2} \) |
| 83 | \( 1 + (2.58 + 2.58i)T + 83iT^{2} \) |
| 89 | \( 1 + (6.96 - 6.96i)T - 89iT^{2} \) |
| 97 | \( 1 + (-5.67 + 5.67i)T - 97iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.752349037374283332183452682053, −9.043681522669818481844001457825, −8.450495065497752484961185456670, −7.68227567398293203035165164560, −6.48638074277871667625390554672, −6.00384368866945115244374236684, −4.37858128375726621188898680145, −3.14668229433337335186434899990, −2.30649655488144933651730123545, −1.55028457427433649377913096987,
1.36512432310787874508685886184, 2.16190075243257430093341138548, 4.18653491738875882177648844134, 4.54946830545572831101529610977, 5.63352355327066847319637880748, 6.90654454756523040012301755783, 7.59041785681794270392148368861, 8.528680156361251784226673455968, 9.124286271121385477961207910264, 9.704584447323801531011459449674