L(s) = 1 | + (−0.5 + 0.866i)2-s + (−0.5 + 0.866i)3-s + (−0.499 − 0.866i)4-s − 3·5-s + (−0.499 − 0.866i)6-s + (1 + 1.73i)7-s + 0.999·8-s + (−0.499 − 0.866i)9-s + (1.5 − 2.59i)10-s + (3 − 5.19i)11-s + 0.999·12-s − 1.99·14-s + (1.5 − 2.59i)15-s + (−0.5 + 0.866i)16-s + (1.5 + 2.59i)17-s + 0.999·18-s + ⋯ |
L(s) = 1 | + (−0.353 + 0.612i)2-s + (−0.288 + 0.499i)3-s + (−0.249 − 0.433i)4-s − 1.34·5-s + (−0.204 − 0.353i)6-s + (0.377 + 0.654i)7-s + 0.353·8-s + (−0.166 − 0.288i)9-s + (0.474 − 0.821i)10-s + (0.904 − 1.56i)11-s + 0.288·12-s − 0.534·14-s + (0.387 − 0.670i)15-s + (−0.125 + 0.216i)16-s + (0.363 + 0.630i)17-s + 0.235·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0128 - 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.9058087635\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.9058087635\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 - 0.866i)T \) |
| 3 | \( 1 + (0.5 - 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + 3T + 5T^{2} \) |
| 7 | \( 1 + (-1 - 1.73i)T + (-3.5 + 6.06i)T^{2} \) |
| 11 | \( 1 + (-3 + 5.19i)T + (-5.5 - 9.52i)T^{2} \) |
| 17 | \( 1 + (-1.5 - 2.59i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-1 - 1.73i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-3 + 5.19i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (1.5 - 2.59i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 4T + 31T^{2} \) |
| 37 | \( 1 + (3.5 - 6.06i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (1.5 - 2.59i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5 - 8.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 6T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (-3.5 - 6.06i)T + (-30.5 + 52.8i)T^{2} \) |
| 67 | \( 1 + (5 - 8.66i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + (-3 - 5.19i)T + (-35.5 + 61.4i)T^{2} \) |
| 73 | \( 1 - 13T + 73T^{2} \) |
| 79 | \( 1 + 4T + 79T^{2} \) |
| 83 | \( 1 - 6T + 83T^{2} \) |
| 89 | \( 1 + (-9 + 15.5i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7 - 12.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.17098017482769254764825271993, −9.001977840954471147593601840267, −8.466335345396784134129871665618, −7.943477552843235372051692402466, −6.71231790152800578131661867995, −5.98771638121019862726517837465, −5.01211841824957368727230080658, −4.03299847662459628965932896770, −3.16747251500587658017099786223, −0.965010919160016085248344419349,
0.68828884815438676489826169522, 1.94859706041883630553691688647, 3.48852194824463752075217887845, 4.27192319431339598584312167493, 5.11876807590698223064728580114, 6.81881506682350185880462802372, 7.40517446390885702761783735686, 7.83575555622262577170252828989, 9.020612880436558334322838123225, 9.749759990523999846255781611579