L(s) = 1 | + (−1 − i)2-s − 1.73·3-s + 2i·4-s + (−4.73 − 4.73i)5-s + (1.73 + 1.73i)6-s + (2.73 − 2.73i)7-s + (2 − 2i)8-s + 2.99·9-s + 9.46i·10-s + (−1.73 + 1.73i)11-s − 3.46i·12-s − 5.46·14-s + (8.19 + 8.19i)15-s − 4·16-s − 29.3i·17-s + (−2.99 − 2.99i)18-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s − 0.577·3-s + 0.5i·4-s + (−0.946 − 0.946i)5-s + (0.288 + 0.288i)6-s + (0.390 − 0.390i)7-s + (0.250 − 0.250i)8-s + 0.333·9-s + 0.946i·10-s + (−0.157 + 0.157i)11-s − 0.288i·12-s − 0.390·14-s + (0.546 + 0.546i)15-s − 0.250·16-s − 1.72i·17-s + (−0.166 − 0.166i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (-0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(0.5448246471\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.5448246471\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 3 | \( 1 + 1.73T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (4.73 + 4.73i)T + 25iT^{2} \) |
| 7 | \( 1 + (-2.73 + 2.73i)T - 49iT^{2} \) |
| 11 | \( 1 + (1.73 - 1.73i)T - 121iT^{2} \) |
| 17 | \( 1 + 29.3iT - 289T^{2} \) |
| 19 | \( 1 + (-11.2 - 11.2i)T + 361iT^{2} \) |
| 23 | \( 1 + 29.3iT - 529T^{2} \) |
| 29 | \( 1 - 31.8T + 841T^{2} \) |
| 31 | \( 1 + (26.9 + 26.9i)T + 961iT^{2} \) |
| 37 | \( 1 + (-30.8 + 30.8i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-14.4 - 14.4i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 + 25.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-41.1 + 41.1i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 - 2.28T + 2.80e3T^{2} \) |
| 59 | \( 1 + (54.6 - 54.6i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + 7.42T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-60.6 - 60.6i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (38.9 + 38.9i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + (40.3 - 40.3i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 + 148.T + 6.24e3T^{2} \) |
| 83 | \( 1 + (73.7 + 73.7i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (25.5 - 25.5i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (-86.0 - 86.0i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.297225934791044013549296651458, −8.504091089640581633319247011895, −7.64525280954539291124909140253, −7.11846999631521134477721575102, −5.66732307774343196320616465628, −4.63213910801004976328219874811, −4.12822541114516897500728299497, −2.67149833920406440975749280577, −1.06605481605288875036560337287, −0.27872729083299149190551868856,
1.41929881342642708982597681322, 3.02086074172713140816526472065, 4.13007319425211358611338347338, 5.26562633322573062815957993919, 6.13691273627329897032358084516, 6.94994195876238352412047627420, 7.72600080173559658313780513766, 8.349594366865984166048370532542, 9.387083589608401242234440600336, 10.39743496852278506626448720410