L(s) = 1 | + (−1 − i)2-s + 1.73·3-s + 2i·4-s + (1.26 + 1.26i)5-s + (−1.73 − 1.73i)6-s + (6.83 − 6.83i)7-s + (2 − 2i)8-s + 2.99·9-s − 2.53i·10-s + (7.26 − 7.26i)11-s + 3.46i·12-s − 13.6·14-s + (2.19 + 2.19i)15-s − 4·16-s − 18.9i·17-s + (−2.99 − 2.99i)18-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + 0.577·3-s + 0.5i·4-s + (0.253 + 0.253i)5-s + (−0.288 − 0.288i)6-s + (0.975 − 0.975i)7-s + (0.250 − 0.250i)8-s + 0.333·9-s − 0.253i·10-s + (0.660 − 0.660i)11-s + 0.288i·12-s − 0.975·14-s + (0.146 + 0.146i)15-s − 0.250·16-s − 1.11i·17-s + (−0.166 − 0.166i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.208 + 0.977i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.208 + 0.977i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(2.262762162\) |
\(L(\frac12)\) |
\(\approx\) |
\(2.262762162\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 + i)T \) |
| 3 | \( 1 - 1.73T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (-1.26 - 1.26i)T + 25iT^{2} \) |
| 7 | \( 1 + (-6.83 + 6.83i)T - 49iT^{2} \) |
| 11 | \( 1 + (-7.26 + 7.26i)T - 121iT^{2} \) |
| 17 | \( 1 + 18.9iT - 289T^{2} \) |
| 19 | \( 1 + (-23.3 - 23.3i)T + 361iT^{2} \) |
| 23 | \( 1 + 4.14iT - 529T^{2} \) |
| 29 | \( 1 + 17.3T + 841T^{2} \) |
| 31 | \( 1 + (22.1 + 22.1i)T + 961iT^{2} \) |
| 37 | \( 1 + (26.1 - 26.1i)T - 1.36e3iT^{2} \) |
| 41 | \( 1 + (-18.2 - 18.2i)T + 1.68e3iT^{2} \) |
| 43 | \( 1 - 15.3iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (7.01 - 7.01i)T - 2.20e3iT^{2} \) |
| 53 | \( 1 + 61.6T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-46.7 + 46.7i)T - 3.48e3iT^{2} \) |
| 61 | \( 1 + 7.30T + 3.72e3T^{2} \) |
| 67 | \( 1 + (-27.7 - 27.7i)T + 4.48e3iT^{2} \) |
| 71 | \( 1 + (-76.0 - 76.0i)T + 5.04e3iT^{2} \) |
| 73 | \( 1 + (-67.4 + 67.4i)T - 5.32e3iT^{2} \) |
| 79 | \( 1 - 11.8T + 6.24e3T^{2} \) |
| 83 | \( 1 + (111. + 111. i)T + 6.88e3iT^{2} \) |
| 89 | \( 1 + (-118. + 118. i)T - 7.92e3iT^{2} \) |
| 97 | \( 1 + (-109. - 109. i)T + 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.691871077410808111073767789515, −8.816568644369094218693912160856, −7.88289389549361044310793534613, −7.46561914949692339300952333662, −6.36119307299258339406625896920, −5.04517162102751305972312593530, −3.96940858172753218863432808233, −3.16562801958643665553331441587, −1.85599317022744716442156756986, −0.864677402408173691937137951705,
1.39412735922902937860612946055, 2.18549038504650819548938580336, 3.69375341744616813034194086961, 4.99883567721763212216075279823, 5.53350395874125104491748727058, 6.78352667945824882965298744762, 7.54618829281438767860894015815, 8.377589280969878679996396397663, 9.200463587745714455253801211364, 9.393414608842057570169273320115