L(s) = 1 | + (−1 + i)2-s + 1.73·3-s − 2i·4-s + (−1.26 + 1.26i)5-s + (−1.73 + 1.73i)6-s + (−0.732 − 0.732i)7-s + (2 + 2i)8-s + 2.99·9-s − 2.53i·10-s + (1.73 + 1.73i)11-s − 3.46i·12-s + 1.46·14-s + (−2.19 + 2.19i)15-s − 4·16-s − 5.32i·17-s + (−2.99 + 2.99i)18-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + 0.577·3-s − 0.5i·4-s + (−0.253 + 0.253i)5-s + (−0.288 + 0.288i)6-s + (−0.104 − 0.104i)7-s + (0.250 + 0.250i)8-s + 0.333·9-s − 0.253i·10-s + (0.157 + 0.157i)11-s − 0.288i·12-s + 0.104·14-s + (−0.146 + 0.146i)15-s − 0.250·16-s − 0.312i·17-s + (−0.166 + 0.166i)18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.881 - 0.471i)\, \overline{\Lambda}(3-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1) \, L(s)\cr =\mathstrut & (0.881 - 0.471i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{3}{2})\) |
\(\approx\) |
\(1.732377305\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.732377305\) |
\(L(2)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (1 - i)T \) |
| 3 | \( 1 - 1.73T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 + (1.26 - 1.26i)T - 25iT^{2} \) |
| 7 | \( 1 + (0.732 + 0.732i)T + 49iT^{2} \) |
| 11 | \( 1 + (-1.73 - 1.73i)T + 121iT^{2} \) |
| 17 | \( 1 + 5.32iT - 289T^{2} \) |
| 19 | \( 1 + (-14.7 + 14.7i)T - 361iT^{2} \) |
| 23 | \( 1 + 5.32iT - 529T^{2} \) |
| 29 | \( 1 - 4.14T + 841T^{2} \) |
| 31 | \( 1 + (-24.9 + 24.9i)T - 961iT^{2} \) |
| 37 | \( 1 + (-3.14 - 3.14i)T + 1.36e3iT^{2} \) |
| 41 | \( 1 + (44.4 - 44.4i)T - 1.68e3iT^{2} \) |
| 43 | \( 1 + 37.1iT - 1.84e3T^{2} \) |
| 47 | \( 1 + (-30.8 - 30.8i)T + 2.20e3iT^{2} \) |
| 53 | \( 1 - 57.7T + 2.80e3T^{2} \) |
| 59 | \( 1 + (-66.6 - 66.6i)T + 3.48e3iT^{2} \) |
| 61 | \( 1 - 103.T + 3.72e3T^{2} \) |
| 67 | \( 1 + (46.6 - 46.6i)T - 4.48e3iT^{2} \) |
| 71 | \( 1 + (-26.9 + 26.9i)T - 5.04e3iT^{2} \) |
| 73 | \( 1 + (5.67 + 5.67i)T + 5.32e3iT^{2} \) |
| 79 | \( 1 - 4.21T + 6.24e3T^{2} \) |
| 83 | \( 1 + (-109. + 109. i)T - 6.88e3iT^{2} \) |
| 89 | \( 1 + (-19.5 - 19.5i)T + 7.92e3iT^{2} \) |
| 97 | \( 1 + (4.03 - 4.03i)T - 9.40e3iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.701402973726662467978850596611, −8.938813923952307414927257111965, −8.183917867430231982334407481602, −7.27951814729233213686188588627, −6.81316542095079358634302932126, −5.61560138042212646409016162531, −4.59905220651031598906255583930, −3.46126753111715763489982446503, −2.35074224672804575744251775613, −0.854215500561437292741241704593,
0.894516102222016927445238338430, 2.14149380697994746117407630618, 3.27879807225990424080896429377, 4.07502518039284188908941231113, 5.25517521556772121726288937409, 6.48430804795055567557933416461, 7.44144234130706364986046897964, 8.309270934456890559802992481363, 8.752999773675496136360026164464, 9.792445069521719974308679101876