L(s) = 1 | + (−0.5 − 0.866i)2-s + (0.5 + 0.866i)3-s + (−0.499 + 0.866i)4-s + 1.73·5-s + (0.499 − 0.866i)6-s + (2.36 − 4.09i)7-s + 0.999·8-s + (−0.499 + 0.866i)9-s + (−0.866 − 1.49i)10-s + (2.36 + 4.09i)11-s − 0.999·12-s − 4.73·14-s + (0.866 + 1.49i)15-s + (−0.5 − 0.866i)16-s + (2.59 − 4.5i)17-s + 0.999·18-s + ⋯ |
L(s) = 1 | + (−0.353 − 0.612i)2-s + (0.288 + 0.499i)3-s + (−0.249 + 0.433i)4-s + 0.774·5-s + (0.204 − 0.353i)6-s + (0.894 − 1.54i)7-s + 0.353·8-s + (−0.166 + 0.288i)9-s + (−0.273 − 0.474i)10-s + (0.713 + 1.23i)11-s − 0.288·12-s − 1.26·14-s + (0.223 + 0.387i)15-s + (−0.125 − 0.216i)16-s + (0.630 − 1.09i)17-s + 0.235·18-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.755 + 0.655i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.755 + 0.655i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.897738488\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.897738488\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (0.5 + 0.866i)T \) |
| 3 | \( 1 + (-0.5 - 0.866i)T \) |
| 13 | \( 1 \) |
good | 5 | \( 1 - 1.73T + 5T^{2} \) |
| 7 | \( 1 + (-2.36 + 4.09i)T + (-3.5 - 6.06i)T^{2} \) |
| 11 | \( 1 + (-2.36 - 4.09i)T + (-5.5 + 9.52i)T^{2} \) |
| 17 | \( 1 + (-2.59 + 4.5i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.633 + 1.09i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.09 + 1.90i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (-1.5 - 2.59i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 + 2.53T + 31T^{2} \) |
| 37 | \( 1 + (-1.5 - 2.59i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.232 + 0.401i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (3.09 - 5.36i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 - 1.26T + 47T^{2} \) |
| 53 | \( 1 - 3T + 53T^{2} \) |
| 59 | \( 1 + (-6.92 + 12i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (2.40 - 4.16i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.36 - 9.29i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + (-4.09 + 7.09i)T + (-35.5 - 61.4i)T^{2} \) |
| 73 | \( 1 - 12.1T + 73T^{2} \) |
| 79 | \( 1 + 12.3T + 79T^{2} \) |
| 83 | \( 1 - 11.6T + 83T^{2} \) |
| 89 | \( 1 + (-1.26 - 2.19i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-3 + 5.19i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.802388415261785615420708096046, −9.471454119315831046714379225232, −8.280499080235791499732860532041, −7.45773483788176518416016642276, −6.75598840639314417028290807737, −5.14382556717242297272576842049, −4.47653124226387003591104945691, −3.59447505604814877523106573955, −2.20124469829245014992331495060, −1.15583859476880636239869723132,
1.40079287153463705573707305331, 2.31489505239269390877729029464, 3.75376449236174848968684612391, 5.41389751332613500273024066505, 5.78697512592380010045927215883, 6.48239898712289480976095206789, 7.82338168817410491683973240381, 8.396301813884124602098685243257, 8.987690496337804351557009587729, 9.719822693442540145805670706402