Properties

Label 2-1014-13.12-c3-0-13
Degree $2$
Conductor $1014$
Sign $-0.554 - 0.832i$
Analytic cond. $59.8279$
Root an. cond. $7.73485$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2i·2-s + 3·3-s − 4·4-s − 10i·5-s + 6i·6-s − 8i·7-s − 8i·8-s + 9·9-s + 20·10-s + 40i·11-s − 12·12-s + 16·14-s − 30i·15-s + 16·16-s − 130·17-s + 18i·18-s + ⋯
L(s)  = 1  + 0.707i·2-s + 0.577·3-s − 0.5·4-s − 0.894i·5-s + 0.408i·6-s − 0.431i·7-s − 0.353i·8-s + 0.333·9-s + 0.632·10-s + 1.09i·11-s − 0.288·12-s + 0.305·14-s − 0.516i·15-s + 0.250·16-s − 1.85·17-s + 0.235i·18-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1014 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.554 - 0.832i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1014\)    =    \(2 \cdot 3 \cdot 13^{2}\)
Sign: $-0.554 - 0.832i$
Analytic conductor: \(59.8279\)
Root analytic conductor: \(7.73485\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1014} (337, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1014,\ (\ :3/2),\ -0.554 - 0.832i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.482392771\)
\(L(\frac12)\) \(\approx\) \(1.482392771\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2iT \)
3 \( 1 - 3T \)
13 \( 1 \)
good5 \( 1 + 10iT - 125T^{2} \)
7 \( 1 + 8iT - 343T^{2} \)
11 \( 1 - 40iT - 1.33e3T^{2} \)
17 \( 1 + 130T + 4.91e3T^{2} \)
19 \( 1 - 20iT - 6.85e3T^{2} \)
23 \( 1 + 1.21e4T^{2} \)
29 \( 1 + 18T + 2.43e4T^{2} \)
31 \( 1 - 184iT - 2.97e4T^{2} \)
37 \( 1 + 74iT - 5.06e4T^{2} \)
41 \( 1 - 362iT - 6.89e4T^{2} \)
43 \( 1 + 76T + 7.95e4T^{2} \)
47 \( 1 + 452iT - 1.03e5T^{2} \)
53 \( 1 - 382T + 1.48e5T^{2} \)
59 \( 1 - 464iT - 2.05e5T^{2} \)
61 \( 1 - 358T + 2.26e5T^{2} \)
67 \( 1 - 700iT - 3.00e5T^{2} \)
71 \( 1 - 748iT - 3.57e5T^{2} \)
73 \( 1 - 1.05e3iT - 3.89e5T^{2} \)
79 \( 1 + 976T + 4.93e5T^{2} \)
83 \( 1 - 1.00e3iT - 5.71e5T^{2} \)
89 \( 1 + 386iT - 7.04e5T^{2} \)
97 \( 1 - 614iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.670128744536759041032034745284, −8.706375114149408590148870097491, −8.458817569423969188568435150628, −7.16165388409966698832172935135, −6.85062451753392867027536244855, −5.45676042879623974439533014159, −4.55362670802625689011220061591, −4.01603530283211187039009158866, −2.41494561031306130401015048528, −1.16923579954615080831175118171, 0.35420853440194243953923057116, 2.03829401380890338725458088501, 2.76813292916274978802455244177, 3.62735962932438679534243527039, 4.64622862781921420867562534243, 5.92104777030879332334984403212, 6.73999239465243409347204606476, 7.76612767480301943300680066515, 8.789616090104045527964856577049, 9.124794221872116073003463240844

Graph of the $Z$-function along the critical line