Properties

Label 2-1008-7.6-c0-0-0
Degree $2$
Conductor $1008$
Sign $1$
Analytic cond. $0.503057$
Root an. cond. $0.709265$
Motivic weight $0$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 7-s + 25-s − 2·37-s + 2·43-s + 49-s − 2·67-s − 2·79-s − 2·109-s + ⋯
L(s)  = 1  + 7-s + 25-s − 2·37-s + 2·43-s + 49-s − 2·67-s − 2·79-s − 2·109-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(0.503057\)
Root analytic conductor: \(0.709265\)
Motivic weight: \(0\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1008} (433, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :0),\ 1)\)

Particular Values

\(L(\frac{1}{2})\) \(\approx\) \(1.131707792\)
\(L(\frac12)\) \(\approx\) \(1.131707792\)
\(L(1)\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( ( 1 - T )( 1 + T ) \)
11 \( 1 + T^{2} \)
13 \( ( 1 - T )( 1 + T ) \)
17 \( ( 1 - T )( 1 + T ) \)
19 \( ( 1 - T )( 1 + T ) \)
23 \( 1 + T^{2} \)
29 \( 1 + T^{2} \)
31 \( ( 1 - T )( 1 + T ) \)
37 \( ( 1 + T )^{2} \)
41 \( ( 1 - T )( 1 + T ) \)
43 \( ( 1 - T )^{2} \)
47 \( ( 1 - T )( 1 + T ) \)
53 \( 1 + T^{2} \)
59 \( ( 1 - T )( 1 + T ) \)
61 \( ( 1 - T )( 1 + T ) \)
67 \( ( 1 + T )^{2} \)
71 \( 1 + T^{2} \)
73 \( ( 1 - T )( 1 + T ) \)
79 \( ( 1 + T )^{2} \)
83 \( ( 1 - T )( 1 + T ) \)
89 \( ( 1 - T )( 1 + T ) \)
97 \( ( 1 - T )( 1 + T ) \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.38135648011345691803589309960, −9.163741689359194191760740319939, −8.579817645113126499469155624842, −7.65684612460465017599691081192, −6.92557819477438128490332503353, −5.77268073956478368696543829260, −4.94817294281215483330672312472, −4.04675307202977446129999845574, −2.75169508979824310333839449501, −1.46813223319268881607989566238, 1.46813223319268881607989566238, 2.75169508979824310333839449501, 4.04675307202977446129999845574, 4.94817294281215483330672312472, 5.77268073956478368696543829260, 6.92557819477438128490332503353, 7.65684612460465017599691081192, 8.579817645113126499469155624842, 9.163741689359194191760740319939, 10.38135648011345691803589309960

Graph of the $Z$-function along the critical line