L(s) = 1 | + 7-s + 25-s − 2·37-s + 2·43-s + 49-s − 2·67-s − 2·79-s − 2·109-s + ⋯ |
L(s) = 1 | + 7-s + 25-s − 2·37-s + 2·43-s + 49-s − 2·67-s − 2·79-s − 2·109-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]
Particular Values
\(L(\frac{1}{2})\) |
\(\approx\) |
\(1.131707792\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.131707792\) |
\(L(1)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - T \) |
good | 5 | \( ( 1 - T )( 1 + T ) \) |
| 11 | \( 1 + T^{2} \) |
| 13 | \( ( 1 - T )( 1 + T ) \) |
| 17 | \( ( 1 - T )( 1 + T ) \) |
| 19 | \( ( 1 - T )( 1 + T ) \) |
| 23 | \( 1 + T^{2} \) |
| 29 | \( 1 + T^{2} \) |
| 31 | \( ( 1 - T )( 1 + T ) \) |
| 37 | \( ( 1 + T )^{2} \) |
| 41 | \( ( 1 - T )( 1 + T ) \) |
| 43 | \( ( 1 - T )^{2} \) |
| 47 | \( ( 1 - T )( 1 + T ) \) |
| 53 | \( 1 + T^{2} \) |
| 59 | \( ( 1 - T )( 1 + T ) \) |
| 61 | \( ( 1 - T )( 1 + T ) \) |
| 67 | \( ( 1 + T )^{2} \) |
| 71 | \( 1 + T^{2} \) |
| 73 | \( ( 1 - T )( 1 + T ) \) |
| 79 | \( ( 1 + T )^{2} \) |
| 83 | \( ( 1 - T )( 1 + T ) \) |
| 89 | \( ( 1 - T )( 1 + T ) \) |
| 97 | \( ( 1 - T )( 1 + T ) \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.38135648011345691803589309960, −9.163741689359194191760740319939, −8.579817645113126499469155624842, −7.65684612460465017599691081192, −6.92557819477438128490332503353, −5.77268073956478368696543829260, −4.94817294281215483330672312472, −4.04675307202977446129999845574, −2.75169508979824310333839449501, −1.46813223319268881607989566238,
1.46813223319268881607989566238, 2.75169508979824310333839449501, 4.04675307202977446129999845574, 4.94817294281215483330672312472, 5.77268073956478368696543829260, 6.92557819477438128490332503353, 7.65684612460465017599691081192, 8.579817645113126499469155624842, 9.163741689359194191760740319939, 10.38135648011345691803589309960