Properties

Label 2-1008-7.4-c1-0-6
Degree $2$
Conductor $1008$
Sign $0.991 - 0.126i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more about

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.5 − 0.866i)5-s + (−2 + 1.73i)7-s + (0.5 − 0.866i)11-s + 2·13-s + (1.5 − 2.59i)17-s + (2.5 + 4.33i)19-s + (1.5 + 2.59i)23-s + (2 − 3.46i)25-s + 6·29-s + (−0.5 + 0.866i)31-s + (2.5 + 0.866i)35-s + (2.5 + 4.33i)37-s + 10·41-s + 4·43-s + (−0.5 − 0.866i)47-s + ⋯
L(s)  = 1  + (−0.223 − 0.387i)5-s + (−0.755 + 0.654i)7-s + (0.150 − 0.261i)11-s + 0.554·13-s + (0.363 − 0.630i)17-s + (0.573 + 0.993i)19-s + (0.312 + 0.541i)23-s + (0.400 − 0.692i)25-s + 1.11·29-s + (−0.0898 + 0.155i)31-s + (0.422 + 0.146i)35-s + (0.410 + 0.711i)37-s + 1.56·41-s + 0.609·43-s + (−0.0729 − 0.126i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.991 - 0.126i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.991 - 0.126i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (865, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ 0.991 - 0.126i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.469402574\)
\(L(\frac12)\) \(\approx\) \(1.469402574\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (2 - 1.73i)T \)
good5 \( 1 + (0.5 + 0.866i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (-0.5 + 0.866i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 - 2T + 13T^{2} \)
17 \( 1 + (-1.5 + 2.59i)T + (-8.5 - 14.7i)T^{2} \)
19 \( 1 + (-2.5 - 4.33i)T + (-9.5 + 16.4i)T^{2} \)
23 \( 1 + (-1.5 - 2.59i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 - 6T + 29T^{2} \)
31 \( 1 + (0.5 - 0.866i)T + (-15.5 - 26.8i)T^{2} \)
37 \( 1 + (-2.5 - 4.33i)T + (-18.5 + 32.0i)T^{2} \)
41 \( 1 - 10T + 41T^{2} \)
43 \( 1 - 4T + 43T^{2} \)
47 \( 1 + (0.5 + 0.866i)T + (-23.5 + 40.7i)T^{2} \)
53 \( 1 + (4.5 - 7.79i)T + (-26.5 - 45.8i)T^{2} \)
59 \( 1 + (1.5 - 2.59i)T + (-29.5 - 51.0i)T^{2} \)
61 \( 1 + (1.5 + 2.59i)T + (-30.5 + 52.8i)T^{2} \)
67 \( 1 + (-5.5 + 9.52i)T + (-33.5 - 58.0i)T^{2} \)
71 \( 1 - 16T + 71T^{2} \)
73 \( 1 + (3.5 - 6.06i)T + (-36.5 - 63.2i)T^{2} \)
79 \( 1 + (5.5 + 9.52i)T + (-39.5 + 68.4i)T^{2} \)
83 \( 1 + 4T + 83T^{2} \)
89 \( 1 + (4.5 + 7.79i)T + (-44.5 + 77.0i)T^{2} \)
97 \( 1 - 6T + 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.822619217327604104467481483554, −9.190973368019776803627160521415, −8.384863079289364299930103497260, −7.57333318884158429398472728881, −6.43074901407398062327640143470, −5.78584299680618383915517211986, −4.76554360252215029645398792202, −3.59938462516958460735302982934, −2.70611673683731409588438346324, −1.02886509453587497814523678664, 0.929291784208924058092353344144, 2.69567004105066359879896635740, 3.62435477072564995386089615425, 4.53257981401221815748613933892, 5.77885638114771607223014297443, 6.70305336083795668527057368425, 7.27329794052968321813846905390, 8.255758357352845241190116196515, 9.248031571722641190187161665819, 9.916513076113166673311189167055

Graph of the $Z$-function along the critical line