L(s) = 1 | + (0.5 + 2.59i)7-s − 7·13-s + (−3.5 + 6.06i)19-s + (2.5 + 4.33i)25-s + (−3.5 − 6.06i)31-s + (0.5 − 0.866i)37-s − 5·43-s + (−6.5 + 2.59i)49-s + (−7 + 12.1i)61-s + (5.5 + 9.52i)67-s + (3.5 + 6.06i)73-s + (−6.5 + 11.2i)79-s + (−3.5 − 18.1i)91-s + 14·97-s + (−3.5 + 6.06i)103-s + ⋯ |
L(s) = 1 | + (0.188 + 0.981i)7-s − 1.94·13-s + (−0.802 + 1.39i)19-s + (0.5 + 0.866i)25-s + (−0.628 − 1.08i)31-s + (0.0821 − 0.142i)37-s − 0.762·43-s + (−0.928 + 0.371i)49-s + (−0.896 + 1.55i)61-s + (0.671 + 1.16i)67-s + (0.409 + 0.709i)73-s + (−0.731 + 1.26i)79-s + (−0.366 − 1.90i)91-s + 1.42·97-s + (−0.344 + 0.597i)103-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.701 - 0.712i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.7997956491\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.7997956491\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-0.5 - 2.59i)T \) |
good | 5 | \( 1 + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 7T + 13T^{2} \) |
| 17 | \( 1 + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (3.5 - 6.06i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 29T^{2} \) |
| 31 | \( 1 + (3.5 + 6.06i)T + (-15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + 41T^{2} \) |
| 43 | \( 1 + 5T + 43T^{2} \) |
| 47 | \( 1 + (-23.5 - 40.7i)T^{2} \) |
| 53 | \( 1 + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-29.5 + 51.0i)T^{2} \) |
| 61 | \( 1 + (7 - 12.1i)T + (-30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-5.5 - 9.52i)T + (-33.5 + 58.0i)T^{2} \) |
| 71 | \( 1 + 71T^{2} \) |
| 73 | \( 1 + (-3.5 - 6.06i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.5 - 11.2i)T + (-39.5 - 68.4i)T^{2} \) |
| 83 | \( 1 + 83T^{2} \) |
| 89 | \( 1 + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 - 14T + 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.09483885543316872585529127791, −9.522503565607493123660424770732, −8.625070940816977595190755931455, −7.79694550440379629369947205093, −6.99022875816697026822061597234, −5.84779876966750141570473531862, −5.18893701315880067251559790016, −4.14987164623491398145971295562, −2.80204972038659717137231396963, −1.88901651232010319783404348713,
0.33912932270619432428170501962, 2.08520216175623550365198959326, 3.23044867448268840131880782797, 4.62166371418805977949109790621, 4.93238082688137468244823726078, 6.50175722611677744829777055765, 7.11426637292004039037432808600, 7.86380392439374857471887658001, 8.876800781619641351557387430949, 9.739964533280980824734511381197