Properties

Label 2-1008-63.58-c1-0-3
Degree $2$
Conductor $1008$
Sign $0.638 - 0.769i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−0.933 − 1.45i)3-s + (−0.296 − 0.514i)5-s + (−2.32 − 1.26i)7-s + (−1.25 + 2.72i)9-s + (−0.296 + 0.514i)11-s + (−1.25 + 2.17i)13-s + (−0.472 + 0.912i)15-s + (1.46 + 2.52i)17-s + (−2.69 + 4.66i)19-s + (0.323 + 4.57i)21-s + (2.23 + 3.86i)23-s + (2.32 − 4.02i)25-s + (5.14 − 0.708i)27-s + (−3.09 − 5.36i)29-s + 7.86·31-s + ⋯
L(s)  = 1  + (−0.538 − 0.842i)3-s + (−0.132 − 0.229i)5-s + (−0.878 − 0.478i)7-s + (−0.419 + 0.907i)9-s + (−0.0894 + 0.154i)11-s + (−0.348 + 0.603i)13-s + (−0.122 + 0.235i)15-s + (0.354 + 0.613i)17-s + (−0.617 + 1.06i)19-s + (0.0706 + 0.997i)21-s + (0.465 + 0.805i)23-s + (0.464 − 0.804i)25-s + (0.990 − 0.136i)27-s + (−0.575 − 0.996i)29-s + 1.41·31-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.638 - 0.769i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (625, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ 0.638 - 0.769i)\)

Particular Values

\(L(1)\) \(\approx\) \(0.6988914604\)
\(L(\frac12)\) \(\approx\) \(0.6988914604\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 + (0.933 + 1.45i)T \)
7 \( 1 + (2.32 + 1.26i)T \)
good5 \( 1 + (0.296 + 0.514i)T + (-2.5 + 4.33i)T^{2} \)
11 \( 1 + (0.296 - 0.514i)T + (-5.5 - 9.52i)T^{2} \)
13 \( 1 + (1.25 - 2.17i)T + (-6.5 - 11.2i)T^{2} \)
17 \( 1 + (-1.46 - 2.52i)T + (-8.5 + 14.7i)T^{2} \)
19 \( 1 + (2.69 - 4.66i)T + (-9.5 - 16.4i)T^{2} \)
23 \( 1 + (-2.23 - 3.86i)T + (-11.5 + 19.9i)T^{2} \)
29 \( 1 + (3.09 + 5.36i)T + (-14.5 + 25.1i)T^{2} \)
31 \( 1 - 7.86T + 31T^{2} \)
37 \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \)
41 \( 1 + (0.136 - 0.236i)T + (-20.5 - 35.5i)T^{2} \)
43 \( 1 + (-5.58 - 9.66i)T + (-21.5 + 37.2i)T^{2} \)
47 \( 1 + 12.1T + 47T^{2} \)
53 \( 1 + (-4.02 - 6.97i)T + (-26.5 + 45.8i)T^{2} \)
59 \( 1 + 8.64T + 59T^{2} \)
61 \( 1 + 6.64T + 61T^{2} \)
67 \( 1 - 1.91T + 67T^{2} \)
71 \( 1 - 14.4T + 71T^{2} \)
73 \( 1 + (-3.95 - 6.85i)T + (-36.5 + 63.2i)T^{2} \)
79 \( 1 - 9.24T + 79T^{2} \)
83 \( 1 + (3.85 + 6.66i)T + (-41.5 + 71.8i)T^{2} \)
89 \( 1 + (6.21 - 10.7i)T + (-44.5 - 77.0i)T^{2} \)
97 \( 1 + (-5.86 - 10.1i)T + (-48.5 + 84.0i)T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−10.12147673975391372888831041843, −9.355759395206088011562605182671, −8.115877464592453149040165543548, −7.63379415787200545327559284115, −6.46895300906658420863929977530, −6.17320075060794553583574608279, −4.89397526299315625053911525482, −3.89020791889088343854179947962, −2.54119648073484647939638406202, −1.19369179840054501224239449699, 0.38101654141231479877230176497, 2.74949312975099090724305925870, 3.42208860322518367128159568356, 4.74233028439509593182627061415, 5.39702463163573144640464018722, 6.43897247883904184335765597816, 7.06728908982733059560864662888, 8.432536494702805238050536230713, 9.191735184773029886404185040496, 9.851419965500641769618782783101

Graph of the $Z$-function along the critical line