L(s) = 1 | + (−0.933 − 1.45i)3-s + (−0.296 − 0.514i)5-s + (−2.32 − 1.26i)7-s + (−1.25 + 2.72i)9-s + (−0.296 + 0.514i)11-s + (−1.25 + 2.17i)13-s + (−0.472 + 0.912i)15-s + (1.46 + 2.52i)17-s + (−2.69 + 4.66i)19-s + (0.323 + 4.57i)21-s + (2.23 + 3.86i)23-s + (2.32 − 4.02i)25-s + (5.14 − 0.708i)27-s + (−3.09 − 5.36i)29-s + 7.86·31-s + ⋯ |
L(s) = 1 | + (−0.538 − 0.842i)3-s + (−0.132 − 0.229i)5-s + (−0.878 − 0.478i)7-s + (−0.419 + 0.907i)9-s + (−0.0894 + 0.154i)11-s + (−0.348 + 0.603i)13-s + (−0.122 + 0.235i)15-s + (0.354 + 0.613i)17-s + (−0.617 + 1.06i)19-s + (0.0706 + 0.997i)21-s + (0.465 + 0.805i)23-s + (0.464 − 0.804i)25-s + (0.990 − 0.136i)27-s + (−0.575 − 0.996i)29-s + 1.41·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.638 - 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6988914604\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6988914604\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.933 + 1.45i)T \) |
| 7 | \( 1 + (2.32 + 1.26i)T \) |
good | 5 | \( 1 + (0.296 + 0.514i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (0.296 - 0.514i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (1.25 - 2.17i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.46 - 2.52i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (2.69 - 4.66i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.23 - 3.86i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.09 + 5.36i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 7.86T + 31T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (0.136 - 0.236i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.58 - 9.66i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 + 12.1T + 47T^{2} \) |
| 53 | \( 1 + (-4.02 - 6.97i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + 8.64T + 59T^{2} \) |
| 61 | \( 1 + 6.64T + 61T^{2} \) |
| 67 | \( 1 - 1.91T + 67T^{2} \) |
| 71 | \( 1 - 14.4T + 71T^{2} \) |
| 73 | \( 1 + (-3.95 - 6.85i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 9.24T + 79T^{2} \) |
| 83 | \( 1 + (3.85 + 6.66i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (6.21 - 10.7i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.86 - 10.1i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.12147673975391372888831041843, −9.355759395206088011562605182671, −8.115877464592453149040165543548, −7.63379415787200545327559284115, −6.46895300906658420863929977530, −6.17320075060794553583574608279, −4.89397526299315625053911525482, −3.89020791889088343854179947962, −2.54119648073484647939638406202, −1.19369179840054501224239449699,
0.38101654141231479877230176497, 2.74949312975099090724305925870, 3.42208860322518367128159568356, 4.74233028439509593182627061415, 5.39702463163573144640464018722, 6.43897247883904184335765597816, 7.06728908982733059560864662888, 8.432536494702805238050536230713, 9.191735184773029886404185040496, 9.851419965500641769618782783101