L(s) = 1 | + (−1.71 + 0.272i)3-s + (1.59 + 2.75i)5-s + (2.56 + 0.658i)7-s + (2.85 − 0.931i)9-s + (1.59 − 2.75i)11-s + (2.85 − 4.93i)13-s + (−3.47 − 4.28i)15-s + (−0.760 − 1.31i)17-s + (0.641 − 1.11i)19-s + (−4.56 − 0.429i)21-s + (1.11 + 1.93i)23-s + (−2.56 + 4.43i)25-s + (−4.62 + 2.36i)27-s + (−3.54 − 6.13i)29-s + 9.42·31-s + ⋯ |
L(s) = 1 | + (−0.987 + 0.157i)3-s + (0.711 + 1.23i)5-s + (0.968 + 0.249i)7-s + (0.950 − 0.310i)9-s + (0.479 − 0.830i)11-s + (0.790 − 1.36i)13-s + (−0.896 − 1.10i)15-s + (−0.184 − 0.319i)17-s + (0.147 − 0.254i)19-s + (−0.995 − 0.0937i)21-s + (0.233 + 0.404i)23-s + (−0.512 + 0.887i)25-s + (−0.890 + 0.455i)27-s + (−0.657 − 1.13i)29-s + 1.69·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.954 - 0.297i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.608627606\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.608627606\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (1.71 - 0.272i)T \) |
| 7 | \( 1 + (-2.56 - 0.658i)T \) |
good | 5 | \( 1 + (-1.59 - 2.75i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.59 + 2.75i)T + (-5.5 - 9.52i)T^{2} \) |
| 13 | \( 1 + (-2.85 + 4.93i)T + (-6.5 - 11.2i)T^{2} \) |
| 17 | \( 1 + (0.760 + 1.31i)T + (-8.5 + 14.7i)T^{2} \) |
| 19 | \( 1 + (-0.641 + 1.11i)T + (-9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-1.11 - 1.93i)T + (-11.5 + 19.9i)T^{2} \) |
| 29 | \( 1 + (3.54 + 6.13i)T + (-14.5 + 25.1i)T^{2} \) |
| 31 | \( 1 - 9.42T + 31T^{2} \) |
| 37 | \( 1 + (-0.5 + 0.866i)T + (-18.5 - 32.0i)T^{2} \) |
| 41 | \( 1 + (2.80 - 4.85i)T + (-20.5 - 35.5i)T^{2} \) |
| 43 | \( 1 + (3.41 + 5.91i)T + (-21.5 + 37.2i)T^{2} \) |
| 47 | \( 1 - 5.82T + 47T^{2} \) |
| 53 | \( 1 + (-1.02 - 1.78i)T + (-26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 - 1.12T + 59T^{2} \) |
| 61 | \( 1 - 3.12T + 61T^{2} \) |
| 67 | \( 1 + 10.9T + 67T^{2} \) |
| 71 | \( 1 + 8.69T + 71T^{2} \) |
| 73 | \( 1 + (2.48 + 4.30i)T + (-36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 - 4.13T + 79T^{2} \) |
| 83 | \( 1 + (-4.03 - 6.98i)T + (-41.5 + 71.8i)T^{2} \) |
| 89 | \( 1 + (-0.112 + 0.195i)T + (-44.5 - 77.0i)T^{2} \) |
| 97 | \( 1 + (-7.42 - 12.8i)T + (-48.5 + 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.37376314961998769210972610282, −9.361282922107553191436848500822, −8.268133404281656735383757452160, −7.36515244883759592909830457533, −6.31151315608636840075523768685, −5.87923822569158399210393013669, −5.01478102127000862832057924351, −3.72145895952480140282974803885, −2.58701381403398510692258853420, −1.07603075413844062980935881342,
1.28709742138767331941989284185, 1.77809723784049884372201133048, 4.23275347176796323784113961632, 4.65289890291381468538172867432, 5.53411158092453626380177746255, 6.44933413144962526636686750370, 7.23748672382274982862368867013, 8.427903964541388156236433908948, 9.075801944981360473633126512958, 9.957173461059692076570079714244