L(s) = 1 | + (−0.933 + 1.45i)3-s + (−0.296 + 0.514i)5-s + (−2.32 + 1.26i)7-s + (−1.25 − 2.72i)9-s + (−0.296 − 0.514i)11-s + (−1.25 − 2.17i)13-s + (−0.472 − 0.912i)15-s + (1.46 − 2.52i)17-s + (−2.69 − 4.66i)19-s + (0.323 − 4.57i)21-s + (2.23 − 3.86i)23-s + (2.32 + 4.02i)25-s + (5.14 + 0.708i)27-s + (−3.09 + 5.36i)29-s + 7.86·31-s + ⋯ |
L(s) = 1 | + (−0.538 + 0.842i)3-s + (−0.132 + 0.229i)5-s + (−0.878 + 0.478i)7-s + (−0.419 − 0.907i)9-s + (−0.0894 − 0.154i)11-s + (−0.348 − 0.603i)13-s + (−0.122 − 0.235i)15-s + (0.354 − 0.613i)17-s + (−0.617 − 1.06i)19-s + (0.0706 − 0.997i)21-s + (0.465 − 0.805i)23-s + (0.464 + 0.804i)25-s + (0.990 + 0.136i)27-s + (−0.575 + 0.996i)29-s + 1.41·31-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.638 + 0.769i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.638 + 0.769i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(0.6988914604\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6988914604\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 + (0.933 - 1.45i)T \) |
| 7 | \( 1 + (2.32 - 1.26i)T \) |
good | 5 | \( 1 + (0.296 - 0.514i)T + (-2.5 - 4.33i)T^{2} \) |
| 11 | \( 1 + (0.296 + 0.514i)T + (-5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + (1.25 + 2.17i)T + (-6.5 + 11.2i)T^{2} \) |
| 17 | \( 1 + (-1.46 + 2.52i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (2.69 + 4.66i)T + (-9.5 + 16.4i)T^{2} \) |
| 23 | \( 1 + (-2.23 + 3.86i)T + (-11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + (3.09 - 5.36i)T + (-14.5 - 25.1i)T^{2} \) |
| 31 | \( 1 - 7.86T + 31T^{2} \) |
| 37 | \( 1 + (-0.5 - 0.866i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + (0.136 + 0.236i)T + (-20.5 + 35.5i)T^{2} \) |
| 43 | \( 1 + (-5.58 + 9.66i)T + (-21.5 - 37.2i)T^{2} \) |
| 47 | \( 1 + 12.1T + 47T^{2} \) |
| 53 | \( 1 + (-4.02 + 6.97i)T + (-26.5 - 45.8i)T^{2} \) |
| 59 | \( 1 + 8.64T + 59T^{2} \) |
| 61 | \( 1 + 6.64T + 61T^{2} \) |
| 67 | \( 1 - 1.91T + 67T^{2} \) |
| 71 | \( 1 - 14.4T + 71T^{2} \) |
| 73 | \( 1 + (-3.95 + 6.85i)T + (-36.5 - 63.2i)T^{2} \) |
| 79 | \( 1 - 9.24T + 79T^{2} \) |
| 83 | \( 1 + (3.85 - 6.66i)T + (-41.5 - 71.8i)T^{2} \) |
| 89 | \( 1 + (6.21 + 10.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + (-5.86 + 10.1i)T + (-48.5 - 84.0i)T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.851419965500641769618782783101, −9.191735184773029886404185040496, −8.432536494702805238050536230713, −7.06728908982733059560864662888, −6.43897247883904184335765597816, −5.39702463163573144640464018722, −4.74233028439509593182627061415, −3.42208860322518367128159568356, −2.74949312975099090724305925870, −0.38101654141231479877230176497,
1.19369179840054501224239449699, 2.54119648073484647939638406202, 3.89020791889088343854179947962, 4.89397526299315625053911525482, 6.17320075060794553583574608279, 6.46895300906658420863929977530, 7.63379415787200545327559284115, 8.115877464592453149040165543548, 9.355759395206088011562605182671, 10.12147673975391372888831041843