Properties

Label 2-1008-28.27-c1-0-16
Degree $2$
Conductor $1008$
Sign $-0.188 + 0.981i$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.46i·5-s + (2 + 1.73i)7-s − 3.46i·11-s − 3.46i·13-s − 2·19-s + 3.46i·23-s − 6.99·25-s − 6·29-s + 8·31-s + (5.99 − 6.92i)35-s − 2·37-s − 6.92i·41-s − 10.3i·43-s + (1.00 + 6.92i)49-s − 6·53-s + ⋯
L(s)  = 1  − 1.54i·5-s + (0.755 + 0.654i)7-s − 1.04i·11-s − 0.960i·13-s − 0.458·19-s + 0.722i·23-s − 1.39·25-s − 1.11·29-s + 1.43·31-s + (1.01 − 1.17i)35-s − 0.328·37-s − 1.08i·41-s − 1.58i·43-s + (0.142 + 0.989i)49-s − 0.824·53-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.188 + 0.981i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.188 + 0.981i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.188 + 0.981i$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (559, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ -0.188 + 0.981i)\)

Particular Values

\(L(1)\) \(\approx\) \(1.516464003\)
\(L(\frac12)\) \(\approx\) \(1.516464003\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-2 - 1.73i)T \)
good5 \( 1 + 3.46iT - 5T^{2} \)
11 \( 1 + 3.46iT - 11T^{2} \)
13 \( 1 + 3.46iT - 13T^{2} \)
17 \( 1 - 17T^{2} \)
19 \( 1 + 2T + 19T^{2} \)
23 \( 1 - 3.46iT - 23T^{2} \)
29 \( 1 + 6T + 29T^{2} \)
31 \( 1 - 8T + 31T^{2} \)
37 \( 1 + 2T + 37T^{2} \)
41 \( 1 + 6.92iT - 41T^{2} \)
43 \( 1 + 10.3iT - 43T^{2} \)
47 \( 1 + 47T^{2} \)
53 \( 1 + 6T + 53T^{2} \)
59 \( 1 - 6T + 59T^{2} \)
61 \( 1 + 3.46iT - 61T^{2} \)
67 \( 1 - 3.46iT - 67T^{2} \)
71 \( 1 + 3.46iT - 71T^{2} \)
73 \( 1 + 6.92iT - 73T^{2} \)
79 \( 1 - 3.46iT - 79T^{2} \)
83 \( 1 + 6T + 83T^{2} \)
89 \( 1 + 6.92iT - 89T^{2} \)
97 \( 1 + 13.8iT - 97T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.538757810048670710223571516680, −8.601687696210814962771173394443, −8.443688551158381539660317915026, −7.47724639276814183680221468456, −5.91276184414972441064452187670, −5.43450964107125108163893723856, −4.62942892014019535409008522987, −3.45392698246985011461660649199, −1.97226932497993461772976755695, −0.70507083385500222514702759654, 1.76129286182797138282354903230, 2.78389696342066649299941617996, 4.05998227547414099170188174269, 4.74257174425157228390661136450, 6.24622688126620880327132712726, 6.87160452710330688023772681563, 7.51192819520089582143565234675, 8.380163627580030627585190924310, 9.676006291914819441269344034236, 10.17717654675375195319275814981

Graph of the $Z$-function along the critical line