L(s) = 1 | + (−7.54 + 13.0i)5-s + (−16.2 − 8.80i)7-s + (8.56 − 4.94i)11-s + 67.8i·13-s + (35.0 + 60.7i)17-s + (53.2 + 30.7i)19-s + (113. + 65.7i)23-s + (−51.3 − 88.8i)25-s − 158. i·29-s + (66.2 − 38.2i)31-s + (237. − 146. i)35-s + (−174. + 301. i)37-s + 138.·41-s − 539.·43-s + (−111. + 193. i)47-s + ⋯ |
L(s) = 1 | + (−0.674 + 1.16i)5-s + (−0.879 − 0.475i)7-s + (0.234 − 0.135i)11-s + 1.44i·13-s + (0.500 + 0.866i)17-s + (0.642 + 0.371i)19-s + (1.03 + 0.596i)23-s + (−0.410 − 0.711i)25-s − 1.01i·29-s + (0.383 − 0.221i)31-s + (1.14 − 0.707i)35-s + (−0.774 + 1.34i)37-s + 0.529·41-s − 1.91·43-s + (−0.347 + 0.601i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.945 + 0.326i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.945 + 0.326i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.6037087388\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.6037087388\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (16.2 + 8.80i)T \) |
good | 5 | \( 1 + (7.54 - 13.0i)T + (-62.5 - 108. i)T^{2} \) |
| 11 | \( 1 + (-8.56 + 4.94i)T + (665.5 - 1.15e3i)T^{2} \) |
| 13 | \( 1 - 67.8iT - 2.19e3T^{2} \) |
| 17 | \( 1 + (-35.0 - 60.7i)T + (-2.45e3 + 4.25e3i)T^{2} \) |
| 19 | \( 1 + (-53.2 - 30.7i)T + (3.42e3 + 5.94e3i)T^{2} \) |
| 23 | \( 1 + (-113. - 65.7i)T + (6.08e3 + 1.05e4i)T^{2} \) |
| 29 | \( 1 + 158. iT - 2.43e4T^{2} \) |
| 31 | \( 1 + (-66.2 + 38.2i)T + (1.48e4 - 2.57e4i)T^{2} \) |
| 37 | \( 1 + (174. - 301. i)T + (-2.53e4 - 4.38e4i)T^{2} \) |
| 41 | \( 1 - 138.T + 6.89e4T^{2} \) |
| 43 | \( 1 + 539.T + 7.95e4T^{2} \) |
| 47 | \( 1 + (111. - 193. i)T + (-5.19e4 - 8.99e4i)T^{2} \) |
| 53 | \( 1 + (459. - 265. i)T + (7.44e4 - 1.28e5i)T^{2} \) |
| 59 | \( 1 + (271. + 470. i)T + (-1.02e5 + 1.77e5i)T^{2} \) |
| 61 | \( 1 + (116. + 67.0i)T + (1.13e5 + 1.96e5i)T^{2} \) |
| 67 | \( 1 + (-160. - 277. i)T + (-1.50e5 + 2.60e5i)T^{2} \) |
| 71 | \( 1 + 416. iT - 3.57e5T^{2} \) |
| 73 | \( 1 + (-472. + 272. i)T + (1.94e5 - 3.36e5i)T^{2} \) |
| 79 | \( 1 + (161. - 279. i)T + (-2.46e5 - 4.26e5i)T^{2} \) |
| 83 | \( 1 + 885.T + 5.71e5T^{2} \) |
| 89 | \( 1 + (-812. + 1.40e3i)T + (-3.52e5 - 6.10e5i)T^{2} \) |
| 97 | \( 1 + 739. iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.978309326591241309402461292428, −9.441628030820274171255616909025, −8.249153145041323274642159268946, −7.37915179898963701530502824277, −6.69371808761845553148504428509, −6.12592145915605203062342346018, −4.60801486413078396322761899727, −3.58419783898535929880061940682, −3.08809086911956478654608533136, −1.50674713455854152383680908063,
0.17801668914702054666568827992, 1.05543795034336738480659032940, 2.84303008409876191026805514462, 3.59178592887670661451040590951, 5.00424746294670488862139422148, 5.33002547266658642550100107482, 6.64518760629514375695518419622, 7.51650788968659053379836492763, 8.428378698762853151372660259995, 9.048265669340342119033335055470