Properties

Label 2-1008-21.5-c3-0-16
Degree $2$
Conductor $1008$
Sign $0.317 - 0.948i$
Analytic cond. $59.4739$
Root an. cond. $7.71193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (3.34 − 5.79i)5-s + (12.7 + 13.4i)7-s + (28.2 − 16.3i)11-s + 67.9i·13-s + (15.3 + 26.5i)17-s + (21.8 + 12.6i)19-s + (−68.6 − 39.6i)23-s + (40.0 + 69.4i)25-s + 109. i·29-s + (−238. + 137. i)31-s + (120. − 28.8i)35-s + (160. − 277. i)37-s + 184.·41-s − 364.·43-s + (25.7 − 44.6i)47-s + ⋯
L(s)  = 1  + (0.299 − 0.518i)5-s + (0.687 + 0.725i)7-s + (0.775 − 0.447i)11-s + 1.44i·13-s + (0.218 + 0.378i)17-s + (0.264 + 0.152i)19-s + (−0.622 − 0.359i)23-s + (0.320 + 0.555i)25-s + 0.702i·29-s + (−1.38 + 0.797i)31-s + (0.582 − 0.139i)35-s + (0.711 − 1.23i)37-s + 0.704·41-s − 1.29·43-s + (0.0799 − 0.138i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.317 - 0.948i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.317 - 0.948i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.317 - 0.948i$
Analytic conductor: \(59.4739\)
Root analytic conductor: \(7.71193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (593, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :3/2),\ 0.317 - 0.948i)\)

Particular Values

\(L(2)\) \(\approx\) \(2.244572236\)
\(L(\frac12)\) \(\approx\) \(2.244572236\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-12.7 - 13.4i)T \)
good5 \( 1 + (-3.34 + 5.79i)T + (-62.5 - 108. i)T^{2} \)
11 \( 1 + (-28.2 + 16.3i)T + (665.5 - 1.15e3i)T^{2} \)
13 \( 1 - 67.9iT - 2.19e3T^{2} \)
17 \( 1 + (-15.3 - 26.5i)T + (-2.45e3 + 4.25e3i)T^{2} \)
19 \( 1 + (-21.8 - 12.6i)T + (3.42e3 + 5.94e3i)T^{2} \)
23 \( 1 + (68.6 + 39.6i)T + (6.08e3 + 1.05e4i)T^{2} \)
29 \( 1 - 109. iT - 2.43e4T^{2} \)
31 \( 1 + (238. - 137. i)T + (1.48e4 - 2.57e4i)T^{2} \)
37 \( 1 + (-160. + 277. i)T + (-2.53e4 - 4.38e4i)T^{2} \)
41 \( 1 - 184.T + 6.89e4T^{2} \)
43 \( 1 + 364.T + 7.95e4T^{2} \)
47 \( 1 + (-25.7 + 44.6i)T + (-5.19e4 - 8.99e4i)T^{2} \)
53 \( 1 + (532. - 307. i)T + (7.44e4 - 1.28e5i)T^{2} \)
59 \( 1 + (-207. - 359. i)T + (-1.02e5 + 1.77e5i)T^{2} \)
61 \( 1 + (-411. - 237. i)T + (1.13e5 + 1.96e5i)T^{2} \)
67 \( 1 + (142. + 246. i)T + (-1.50e5 + 2.60e5i)T^{2} \)
71 \( 1 + 965. iT - 3.57e5T^{2} \)
73 \( 1 + (-225. + 130. i)T + (1.94e5 - 3.36e5i)T^{2} \)
79 \( 1 + (219. - 379. i)T + (-2.46e5 - 4.26e5i)T^{2} \)
83 \( 1 - 76.4T + 5.71e5T^{2} \)
89 \( 1 + (356. - 617. i)T + (-3.52e5 - 6.10e5i)T^{2} \)
97 \( 1 - 410. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.308306179420052254682602122279, −9.121490583147923053941677052735, −8.272628376763459643850970159233, −7.21914508113508554469975792179, −6.24291297280748503440203040405, −5.44462727129573306052884171592, −4.54588919714721272872681917022, −3.55128317958334075575429356174, −2.04487409787690014097696573292, −1.30130846127997634456185086567, 0.57649019606367127732004504222, 1.79703937713067332627742128648, 3.04398646689761324720519784038, 4.05991286503265833697098078870, 5.06131450815995078466249548349, 6.01771995935067168303711648103, 6.96577523541170352777287962940, 7.73552779770868778774819805945, 8.409402770906469510177557755263, 9.821345694334335954784577173476

Graph of the $Z$-function along the critical line