Properties

Label 2-1008-21.17-c3-0-9
Degree $2$
Conductor $1008$
Sign $0.852 - 0.523i$
Analytic cond. $59.4739$
Root an. cond. $7.71193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−8.48 − 14.6i)5-s + (−3.52 + 18.1i)7-s + (−60.3 − 34.8i)11-s + 38.2i·13-s + (52.9 − 91.7i)17-s + (−50.3 + 29.0i)19-s + (−107. + 62.3i)23-s + (−81.4 + 141. i)25-s − 66.5i·29-s + (136. + 78.8i)31-s + (297. − 102. i)35-s + (−107. − 185. i)37-s − 448.·41-s + 320.·43-s + (87.8 + 152. i)47-s + ⋯
L(s)  = 1  + (−0.758 − 1.31i)5-s + (−0.190 + 0.981i)7-s + (−1.65 − 0.955i)11-s + 0.815i·13-s + (0.755 − 1.30i)17-s + (−0.608 + 0.351i)19-s + (−0.978 + 0.564i)23-s + (−0.651 + 1.12i)25-s − 0.426i·29-s + (0.791 + 0.456i)31-s + (1.43 − 0.494i)35-s + (−0.476 − 0.824i)37-s − 1.70·41-s + 1.13·43-s + (0.272 + 0.472i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.852 - 0.523i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.852 - 0.523i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.852 - 0.523i$
Analytic conductor: \(59.4739\)
Root analytic conductor: \(7.71193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :3/2),\ 0.852 - 0.523i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.8239006090\)
\(L(\frac12)\) \(\approx\) \(0.8239006090\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (3.52 - 18.1i)T \)
good5 \( 1 + (8.48 + 14.6i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (60.3 + 34.8i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 - 38.2iT - 2.19e3T^{2} \)
17 \( 1 + (-52.9 + 91.7i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (50.3 - 29.0i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (107. - 62.3i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + 66.5iT - 2.43e4T^{2} \)
31 \( 1 + (-136. - 78.8i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (107. + 185. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + 448.T + 6.89e4T^{2} \)
43 \( 1 - 320.T + 7.95e4T^{2} \)
47 \( 1 + (-87.8 - 152. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-585. - 338. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (343. - 594. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (91.1 - 52.6i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (-426. + 738. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 21.6iT - 3.57e5T^{2} \)
73 \( 1 + (-296. - 171. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (-156. - 271. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 - 627.T + 5.71e5T^{2} \)
89 \( 1 + (-207. - 359. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 223. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.461118816465502251538878692135, −8.707142534590780402273291681489, −8.158119145990023807430433753844, −7.40959593798285782453960408972, −5.94071652075567642044830270209, −5.32740814271148156414566508012, −4.52844119473363826248263257100, −3.32815269459359157064762155288, −2.21963042271308026787342688307, −0.67041680566302706768799232011, 0.31888949028602795363598345619, 2.19245284163705521400426603128, 3.21771448826429438334748912596, 4.00012428068307885039227185272, 5.09200044908335811703104902091, 6.32366803402967164853921466162, 7.07657214822041479784096420000, 7.86347846253900515169529960918, 8.222920424690037611343387471153, 10.11389426473673073210962348287

Graph of the $Z$-function along the critical line