Properties

Label 2-1008-21.17-c3-0-46
Degree $2$
Conductor $1008$
Sign $-0.999 - 0.0163i$
Analytic cond. $59.4739$
Root an. cond. $7.71193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−3.34 − 5.79i)5-s + (12.7 − 13.4i)7-s + (−28.2 − 16.3i)11-s − 67.9i·13-s + (−15.3 + 26.5i)17-s + (21.8 − 12.6i)19-s + (68.6 − 39.6i)23-s + (40.0 − 69.4i)25-s + 109. i·29-s + (−238. − 137. i)31-s + (−120. − 28.8i)35-s + (160. + 277. i)37-s − 184.·41-s − 364.·43-s + (−25.7 − 44.6i)47-s + ⋯
L(s)  = 1  + (−0.299 − 0.518i)5-s + (0.687 − 0.725i)7-s + (−0.775 − 0.447i)11-s − 1.44i·13-s + (−0.218 + 0.378i)17-s + (0.264 − 0.152i)19-s + (0.622 − 0.359i)23-s + (0.320 − 0.555i)25-s + 0.702i·29-s + (−1.38 − 0.797i)31-s + (−0.582 − 0.139i)35-s + (0.711 + 1.23i)37-s − 0.704·41-s − 1.29·43-s + (−0.0799 − 0.138i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.999 - 0.0163i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.999 - 0.0163i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.999 - 0.0163i$
Analytic conductor: \(59.4739\)
Root analytic conductor: \(7.71193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :3/2),\ -0.999 - 0.0163i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.9664713002\)
\(L(\frac12)\) \(\approx\) \(0.9664713002\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-12.7 + 13.4i)T \)
good5 \( 1 + (3.34 + 5.79i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (28.2 + 16.3i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 67.9iT - 2.19e3T^{2} \)
17 \( 1 + (15.3 - 26.5i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (-21.8 + 12.6i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-68.6 + 39.6i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 109. iT - 2.43e4T^{2} \)
31 \( 1 + (238. + 137. i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (-160. - 277. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 + 184.T + 6.89e4T^{2} \)
43 \( 1 + 364.T + 7.95e4T^{2} \)
47 \( 1 + (25.7 + 44.6i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-532. - 307. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (207. - 359. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-411. + 237. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (142. - 246. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 + 965. iT - 3.57e5T^{2} \)
73 \( 1 + (-225. - 130. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (219. + 379. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 76.4T + 5.71e5T^{2} \)
89 \( 1 + (-356. - 617. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 410. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−8.997892852723065353763346916592, −8.165139664683448128569403525195, −7.76606464515728314031111129953, −6.70590772007912753560606402571, −5.44623566681436091423143238783, −4.90618064841216331309969842548, −3.79975717898147737601832152694, −2.74957159695832936645223513462, −1.22366884395191290331047252109, −0.24863499336939913872688196936, 1.66418899040243214065446270474, 2.56320547791130402071101931522, 3.77267995539483372271319578326, 4.87563536127266655214740840902, 5.56210078239009562707910818000, 6.86555384055267406611764388531, 7.34877491886656358970039665473, 8.388283366387968497184104531881, 9.143497891107983129200264692560, 9.920927468680886005524608393067

Graph of the $Z$-function along the critical line