Properties

Label 2-1008-21.17-c3-0-12
Degree $2$
Conductor $1008$
Sign $-0.548 - 0.836i$
Analytic cond. $59.4739$
Root an. cond. $7.71193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (2.08 + 3.60i)5-s + (18.2 + 2.97i)7-s + (33.1 + 19.1i)11-s + 49.6i·13-s + (−7.65 + 13.2i)17-s + (−122. + 70.9i)19-s + (−136. + 78.9i)23-s + (53.8 − 93.2i)25-s + 204. i·29-s + (90.5 + 52.2i)31-s + (27.3 + 72.1i)35-s + (−194. − 336. i)37-s + 325.·41-s − 191.·43-s + (−249. − 432. i)47-s + ⋯
L(s)  = 1  + (0.186 + 0.322i)5-s + (0.986 + 0.160i)7-s + (0.909 + 0.524i)11-s + 1.05i·13-s + (−0.109 + 0.189i)17-s + (−1.48 + 0.856i)19-s + (−1.24 + 0.715i)23-s + (0.430 − 0.745i)25-s + 1.31i·29-s + (0.524 + 0.302i)31-s + (0.131 + 0.348i)35-s + (−0.862 − 1.49i)37-s + 1.23·41-s − 0.678·43-s + (−0.775 − 1.34i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.548 - 0.836i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (-0.548 - 0.836i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $-0.548 - 0.836i$
Analytic conductor: \(59.4739\)
Root analytic conductor: \(7.71193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :3/2),\ -0.548 - 0.836i)\)

Particular Values

\(L(2)\) \(\approx\) \(1.805059973\)
\(L(\frac12)\) \(\approx\) \(1.805059973\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (-18.2 - 2.97i)T \)
good5 \( 1 + (-2.08 - 3.60i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (-33.1 - 19.1i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 - 49.6iT - 2.19e3T^{2} \)
17 \( 1 + (7.65 - 13.2i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (122. - 70.9i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (136. - 78.9i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 - 204. iT - 2.43e4T^{2} \)
31 \( 1 + (-90.5 - 52.2i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (194. + 336. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 325.T + 6.89e4T^{2} \)
43 \( 1 + 191.T + 7.95e4T^{2} \)
47 \( 1 + (249. + 432. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (-37.8 - 21.8i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (-86.5 + 149. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-208. + 120. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (440. - 763. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 1.01e3iT - 3.57e5T^{2} \)
73 \( 1 + (361. + 208. i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (237. + 411. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 652.T + 5.71e5T^{2} \)
89 \( 1 + (-298. - 517. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 1.77e3iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.957557072656829274558725731788, −8.867876446076707233718586923541, −8.398000657288273016673188308502, −7.24022616142347307192433419230, −6.55069745265369616735061305175, −5.62928769952321773080113632540, −4.44440954245558136558158125491, −3.85795304564655784111381832071, −2.16335438704687857609837456043, −1.56366115121976316850016375870, 0.43089977143013683550161206752, 1.57613939628257034894626680665, 2.77526351252379080179330911720, 4.14028566551149072385370659536, 4.80077841066117245298179660995, 5.91442772979557206098967994585, 6.62971387915417726839985174072, 7.891970124577835785855130331896, 8.378576848009440667831427976426, 9.191214743268108663768911833913

Graph of the $Z$-function along the critical line