Properties

Label 2-1008-21.17-c3-0-1
Degree $2$
Conductor $1008$
Sign $0.516 - 0.856i$
Analytic cond. $59.4739$
Root an. cond. $7.71193$
Motivic weight $3$
Arithmetic yes
Rational no
Primitive yes
Self-dual no
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + (−7.29 − 12.6i)5-s + (−18.4 − 0.998i)7-s + (−38.7 − 22.3i)11-s − 76.8i·13-s + (−58.3 + 101. i)17-s + (−83.5 + 48.2i)19-s + (6.88 − 3.97i)23-s + (−43.9 + 76.1i)25-s − 86.8i·29-s + (−216. − 124. i)31-s + (122. + 240. i)35-s + (−160. − 277. i)37-s + 231.·41-s + 413.·43-s + (235. + 407. i)47-s + ⋯
L(s)  = 1  + (−0.652 − 1.13i)5-s + (−0.998 − 0.0539i)7-s + (−1.06 − 0.612i)11-s − 1.63i·13-s + (−0.832 + 1.44i)17-s + (−1.00 + 0.582i)19-s + (0.0624 − 0.0360i)23-s + (−0.351 + 0.608i)25-s − 0.556i·29-s + (−1.25 − 0.723i)31-s + (0.590 + 1.16i)35-s + (−0.711 − 1.23i)37-s + 0.881·41-s + 1.46·43-s + (0.730 + 1.26i)47-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.516 - 0.856i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.516 - 0.856i)\, \overline{\Lambda}(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $0.516 - 0.856i$
Analytic conductor: \(59.4739\)
Root analytic conductor: \(7.71193\)
Motivic weight: \(3\)
Rational: no
Arithmetic: yes
Character: $\chi_{1008} (17, \cdot )$
Primitive: yes
Self-dual: no
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :3/2),\ 0.516 - 0.856i)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1372744928\)
\(L(\frac12)\) \(\approx\) \(0.1372744928\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + (18.4 + 0.998i)T \)
good5 \( 1 + (7.29 + 12.6i)T + (-62.5 + 108. i)T^{2} \)
11 \( 1 + (38.7 + 22.3i)T + (665.5 + 1.15e3i)T^{2} \)
13 \( 1 + 76.8iT - 2.19e3T^{2} \)
17 \( 1 + (58.3 - 101. i)T + (-2.45e3 - 4.25e3i)T^{2} \)
19 \( 1 + (83.5 - 48.2i)T + (3.42e3 - 5.94e3i)T^{2} \)
23 \( 1 + (-6.88 + 3.97i)T + (6.08e3 - 1.05e4i)T^{2} \)
29 \( 1 + 86.8iT - 2.43e4T^{2} \)
31 \( 1 + (216. + 124. i)T + (1.48e4 + 2.57e4i)T^{2} \)
37 \( 1 + (160. + 277. i)T + (-2.53e4 + 4.38e4i)T^{2} \)
41 \( 1 - 231.T + 6.89e4T^{2} \)
43 \( 1 - 413.T + 7.95e4T^{2} \)
47 \( 1 + (-235. - 407. i)T + (-5.19e4 + 8.99e4i)T^{2} \)
53 \( 1 + (600. + 346. i)T + (7.44e4 + 1.28e5i)T^{2} \)
59 \( 1 + (-143. + 249. i)T + (-1.02e5 - 1.77e5i)T^{2} \)
61 \( 1 + (-740. + 427. i)T + (1.13e5 - 1.96e5i)T^{2} \)
67 \( 1 + (240. - 416. i)T + (-1.50e5 - 2.60e5i)T^{2} \)
71 \( 1 - 930. iT - 3.57e5T^{2} \)
73 \( 1 + (98.4 + 56.8i)T + (1.94e5 + 3.36e5i)T^{2} \)
79 \( 1 + (111. + 192. i)T + (-2.46e5 + 4.26e5i)T^{2} \)
83 \( 1 + 692.T + 5.71e5T^{2} \)
89 \( 1 + (-258. - 448. i)T + (-3.52e5 + 6.10e5i)T^{2} \)
97 \( 1 + 807. iT - 9.12e5T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.701968746618142280342210484825, −8.660778429244482699572377026741, −8.209375227227839225674666703721, −7.43858436949939762860162413236, −5.99810865070002466268794758264, −5.61135319534140415981377242341, −4.29822889424976700404960416446, −3.57517387237407283153946580414, −2.33985113276575453870867446692, −0.62089892148048534327226213811, 0.05544491258592391576390275563, 2.23103726452747238989183541427, 2.95059224365127950750454921462, 4.05171492963616846078145900707, 4.95740429300396565468142582819, 6.34405886000425028584715756160, 7.10462254509566620902391911246, 7.30010814889898876613491989642, 8.838009122001575548643241240598, 9.359559675686122651480094597664

Graph of the $Z$-function along the critical line