| L(s) = 1 | + (0.144 + 0.250i)5-s + (2.26 + 1.36i)7-s + (5.23 + 3.01i)11-s − 5.46i·13-s + (−2.22 + 3.85i)17-s + (−3.51 + 2.03i)19-s + (−1.11 + 0.645i)23-s + (2.45 − 4.25i)25-s + 0.377i·29-s + (3.09 + 1.78i)31-s + (−0.0126 + 0.766i)35-s + (1.01 + 1.75i)37-s − 5.50·41-s + 6.45·43-s + (5.38 + 9.33i)47-s + ⋯ |
| L(s) = 1 | + (0.0647 + 0.112i)5-s + (0.857 + 0.514i)7-s + (1.57 + 0.910i)11-s − 1.51i·13-s + (−0.540 + 0.935i)17-s + (−0.806 + 0.465i)19-s + (−0.232 + 0.134i)23-s + (0.491 − 0.851i)25-s + 0.0701i·29-s + (0.556 + 0.321i)31-s + (−0.00214 + 0.129i)35-s + (0.166 + 0.289i)37-s − 0.859·41-s + 0.984·43-s + (0.785 + 1.36i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.856 - 0.515i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.856 - 0.515i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.886511252\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.886511252\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (-2.26 - 1.36i)T \) |
| good | 5 | \( 1 + (-0.144 - 0.250i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-5.23 - 3.01i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 5.46iT - 13T^{2} \) |
| 17 | \( 1 + (2.22 - 3.85i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (3.51 - 2.03i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (1.11 - 0.645i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 - 0.377iT - 29T^{2} \) |
| 31 | \( 1 + (-3.09 - 1.78i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-1.01 - 1.75i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 5.50T + 41T^{2} \) |
| 43 | \( 1 - 6.45T + 43T^{2} \) |
| 47 | \( 1 + (-5.38 - 9.33i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-9.77 - 5.64i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-0.790 + 1.36i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-9.54 + 5.51i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-2.04 + 3.53i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 0.410iT - 71T^{2} \) |
| 73 | \( 1 + (11.1 + 6.41i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (6.01 + 10.4i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 0.155T + 83T^{2} \) |
| 89 | \( 1 + (3.34 + 5.79i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 16.5iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.19550602430202047221926426163, −9.060348511290153417995580372152, −8.435857892987952104631551552454, −7.64134073135395835314606650297, −6.53287013524063808498100961108, −5.85289405067366841466100799909, −4.69176102170339663095304282627, −3.92783863618947671791831707977, −2.49634489334945319146422458543, −1.37841145466071230861970633191,
1.03982138388953356249835519303, 2.25522239316860809256872679945, 3.90021718316997922841077348849, 4.40000909466979929303877835069, 5.56413023147083539497368613321, 6.78427087846305509474893655997, 7.06394812668417840944721013242, 8.606518852041868369519100928168, 8.827272999669037522367818808642, 9.785900955776882007535496620028