| L(s) = 1 | + (1.01 + 1.75i)5-s + (−0.561 − 2.58i)7-s + (3.14 + 1.81i)11-s + 4.74i·13-s + (−1.71 + 2.97i)17-s + (−4.34 + 2.50i)19-s + (6.02 − 3.47i)23-s + (0.456 − 0.790i)25-s − 2.03i·29-s + (0.266 + 0.153i)31-s + (3.95 − 3.59i)35-s + (5.84 + 10.1i)37-s + 8.77·41-s − 3.21·43-s + (0.192 + 0.332i)47-s + ⋯ |
| L(s) = 1 | + (0.452 + 0.783i)5-s + (−0.212 − 0.977i)7-s + (0.946 + 0.546i)11-s + 1.31i·13-s + (−0.417 + 0.722i)17-s + (−0.997 + 0.575i)19-s + (1.25 − 0.724i)23-s + (0.0912 − 0.158i)25-s − 0.378i·29-s + (0.0478 + 0.0276i)31-s + (0.669 − 0.608i)35-s + (0.961 + 1.66i)37-s + 1.37·41-s − 0.489·43-s + (0.0280 + 0.0485i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.576 - 0.817i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (0.576 - 0.817i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.686297156\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.686297156\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.561 + 2.58i)T \) |
| good | 5 | \( 1 + (-1.01 - 1.75i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-3.14 - 1.81i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 4.74iT - 13T^{2} \) |
| 17 | \( 1 + (1.71 - 2.97i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.34 - 2.50i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-6.02 + 3.47i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 2.03iT - 29T^{2} \) |
| 31 | \( 1 + (-0.266 - 0.153i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-5.84 - 10.1i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 8.77T + 41T^{2} \) |
| 43 | \( 1 + 3.21T + 43T^{2} \) |
| 47 | \( 1 + (-0.192 - 0.332i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-5.53 - 3.19i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (4.25 - 7.37i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (-1.05 + 0.610i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-0.0419 + 0.0727i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 8.41iT - 71T^{2} \) |
| 73 | \( 1 + (9.11 + 5.26i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-0.821 - 1.42i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 10.3T + 83T^{2} \) |
| 89 | \( 1 + (-4.30 - 7.45i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 + 12.7iT - 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.16477955467365968523446275227, −9.368079889012475927637329916738, −8.529114307517564473211631470266, −7.34490163662402897333972878575, −6.52702431094836981586152707042, −6.32516731208521877188375160225, −4.49820685642732067979197159581, −4.05031266454377134863092626802, −2.65778821675942004656251842851, −1.45250412960641879429749869245,
0.847420042959029426363114093876, 2.34892887435399432528311611417, 3.40816899546927112487420391134, 4.77480692217785775836500308622, 5.52872390643248286140946053268, 6.24310356997812861325326588128, 7.32060218793291630812294877167, 8.454037572518982713768600541499, 9.127403033529045456127326958266, 9.439254626949447175077803152222