L(s) = 1 | + (−0.587 − 1.01i)5-s + (−2.35 + 1.21i)7-s + (1.44 + 0.835i)11-s − 1.14i·13-s + (2.07 − 3.59i)17-s + (−1.83 + 1.05i)19-s + (4.22 − 2.43i)23-s + (1.81 − 3.13i)25-s − 8.32i·29-s + (−7.18 − 4.14i)31-s + (2.61 + 1.68i)35-s + (−2.19 − 3.81i)37-s + 2.67·41-s − 4.08·43-s + (−1.75 − 3.03i)47-s + ⋯ |
L(s) = 1 | + (−0.262 − 0.454i)5-s + (−0.889 + 0.457i)7-s + (0.436 + 0.251i)11-s − 0.317i·13-s + (0.503 − 0.872i)17-s + (−0.420 + 0.242i)19-s + (0.880 − 0.508i)23-s + (0.362 − 0.627i)25-s − 1.54i·29-s + (−1.28 − 0.744i)31-s + (0.441 + 0.284i)35-s + (−0.361 − 0.626i)37-s + 0.417·41-s − 0.623·43-s + (−0.255 − 0.442i)47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0137 + 0.999i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0137 + 0.999i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.055980836\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.055980836\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (2.35 - 1.21i)T \) |
good | 5 | \( 1 + (0.587 + 1.01i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (-1.44 - 0.835i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 + 1.14iT - 13T^{2} \) |
| 17 | \( 1 + (-2.07 + 3.59i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (1.83 - 1.05i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (-4.22 + 2.43i)T + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 8.32iT - 29T^{2} \) |
| 31 | \( 1 + (7.18 + 4.14i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (2.19 + 3.81i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 - 2.67T + 41T^{2} \) |
| 43 | \( 1 + 4.08T + 43T^{2} \) |
| 47 | \( 1 + (1.75 + 3.03i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (-1.59 - 0.922i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (-2.98 + 5.17i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (12.8 - 7.39i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (-4.22 + 7.31i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 + 5.48iT - 71T^{2} \) |
| 73 | \( 1 + (-0.846 - 0.488i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.56 - 9.63i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 + 10.2T + 83T^{2} \) |
| 89 | \( 1 + (-6.29 - 10.9i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 9.52iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−9.597571100730449148582390731591, −9.063474205066494371708269256724, −8.151167963057650313634862073660, −7.21924295960170796951474882445, −6.33292161508406367852986652883, −5.46718779084040070926152984053, −4.43667049052137721745760015032, −3.41121174817107106332987257932, −2.29214188657053800574393688304, −0.50490843230729265885093622813,
1.43141586911129919552210958920, 3.17392496294107060539130616532, 3.64869277029200706478185101107, 4.93924969892419756482418015234, 6.06171160662297346171028889341, 6.89744671018021273423015856425, 7.41563165939066602946049763075, 8.702444205200590499405052454455, 9.255952841481890841394796624294, 10.32147752395836232273498094756