L(s) = 1 | + (1.22 + 2.12i)5-s + (−0.5 + 2.59i)7-s + (−3.67 − 2.12i)11-s + 1.73i·13-s + (−2.44 + 4.24i)17-s + (−4.5 + 2.59i)19-s + (−0.499 + 0.866i)25-s − 8.48i·29-s + (1.5 + 0.866i)31-s + (−6.12 + 2.12i)35-s + (2.5 + 4.33i)37-s − 12.2·41-s + 11·43-s + (−1.22 − 2.12i)47-s + (−6.5 − 2.59i)49-s + ⋯ |
L(s) = 1 | + (0.547 + 0.948i)5-s + (−0.188 + 0.981i)7-s + (−1.10 − 0.639i)11-s + 0.480i·13-s + (−0.594 + 1.02i)17-s + (−1.03 + 0.596i)19-s + (−0.0999 + 0.173i)25-s − 1.57i·29-s + (0.269 + 0.155i)31-s + (−1.03 + 0.358i)35-s + (0.410 + 0.711i)37-s − 1.91·41-s + 1.67·43-s + (−0.178 − 0.309i)47-s + (−0.928 − 0.371i)49-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.778 - 0.627i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.778 - 0.627i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(1)\) |
\(\approx\) |
\(1.034583579\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.034583579\) |
\(L(\frac{3}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 + (0.5 - 2.59i)T \) |
good | 5 | \( 1 + (-1.22 - 2.12i)T + (-2.5 + 4.33i)T^{2} \) |
| 11 | \( 1 + (3.67 + 2.12i)T + (5.5 + 9.52i)T^{2} \) |
| 13 | \( 1 - 1.73iT - 13T^{2} \) |
| 17 | \( 1 + (2.44 - 4.24i)T + (-8.5 - 14.7i)T^{2} \) |
| 19 | \( 1 + (4.5 - 2.59i)T + (9.5 - 16.4i)T^{2} \) |
| 23 | \( 1 + (11.5 - 19.9i)T^{2} \) |
| 29 | \( 1 + 8.48iT - 29T^{2} \) |
| 31 | \( 1 + (-1.5 - 0.866i)T + (15.5 + 26.8i)T^{2} \) |
| 37 | \( 1 + (-2.5 - 4.33i)T + (-18.5 + 32.0i)T^{2} \) |
| 41 | \( 1 + 12.2T + 41T^{2} \) |
| 43 | \( 1 - 11T + 43T^{2} \) |
| 47 | \( 1 + (1.22 + 2.12i)T + (-23.5 + 40.7i)T^{2} \) |
| 53 | \( 1 + (7.34 + 4.24i)T + (26.5 + 45.8i)T^{2} \) |
| 59 | \( 1 + (2.44 - 4.24i)T + (-29.5 - 51.0i)T^{2} \) |
| 61 | \( 1 + (3 - 1.73i)T + (30.5 - 52.8i)T^{2} \) |
| 67 | \( 1 + (3.5 - 6.06i)T + (-33.5 - 58.0i)T^{2} \) |
| 71 | \( 1 - 12.7iT - 71T^{2} \) |
| 73 | \( 1 + (-13.5 - 7.79i)T + (36.5 + 63.2i)T^{2} \) |
| 79 | \( 1 + (-5.5 - 9.52i)T + (-39.5 + 68.4i)T^{2} \) |
| 83 | \( 1 - 12.2T + 83T^{2} \) |
| 89 | \( 1 + (-7.34 - 12.7i)T + (-44.5 + 77.0i)T^{2} \) |
| 97 | \( 1 - 3.46iT - 97T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.35114819479896763805486386282, −9.579491681616927301989561511860, −8.498533504858456367193036977264, −8.016206767619228802205598331170, −6.55264493989360094446862009763, −6.21877742617943630113763350783, −5.30033420940546620338107280662, −3.99392036709611092284993164219, −2.74002355058970170247253193875, −2.10570633483515364680817839395,
0.43662848751911183638056613547, 1.93853191716278489484572768193, 3.20709162832593535650803844962, 4.74311949036853756496108450915, 4.91875057376468010794363206929, 6.24056060418528971947038944264, 7.20226163126354531743418851038, 7.909136529473175596026606068299, 8.989654849722098273917684273814, 9.527054934202684853032740921468