| L(s) = 1 | + 3.86i·5-s + i·7-s + 5.27·11-s + 2·13-s + 1.03i·17-s − 5.46i·19-s + 0.378·23-s − 9.92·25-s + 6.31i·29-s + 9.46i·31-s − 3.86·35-s − 10.9·37-s + 5.93i·41-s + 4i·43-s + 8.48·47-s + ⋯ |
| L(s) = 1 | + 1.72i·5-s + 0.377i·7-s + 1.59·11-s + 0.554·13-s + 0.251i·17-s − 1.25i·19-s + 0.0790·23-s − 1.98·25-s + 1.17i·29-s + 1.69i·31-s − 0.653·35-s − 1.79·37-s + 0.926i·41-s + 0.609i·43-s + 1.23·47-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.0917 - 0.995i)\, \overline{\Lambda}(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & (-0.0917 - 0.995i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
| \(L(1)\) |
\(\approx\) |
\(1.663628001\) |
| \(L(\frac12)\) |
\(\approx\) |
\(1.663628001\) |
| \(L(\frac{3}{2})\) |
|
not available |
| \(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
|---|
| bad | 2 | \( 1 \) |
| 3 | \( 1 \) |
| 7 | \( 1 - iT \) |
| good | 5 | \( 1 - 3.86iT - 5T^{2} \) |
| 11 | \( 1 - 5.27T + 11T^{2} \) |
| 13 | \( 1 - 2T + 13T^{2} \) |
| 17 | \( 1 - 1.03iT - 17T^{2} \) |
| 19 | \( 1 + 5.46iT - 19T^{2} \) |
| 23 | \( 1 - 0.378T + 23T^{2} \) |
| 29 | \( 1 - 6.31iT - 29T^{2} \) |
| 31 | \( 1 - 9.46iT - 31T^{2} \) |
| 37 | \( 1 + 10.9T + 37T^{2} \) |
| 41 | \( 1 - 5.93iT - 41T^{2} \) |
| 43 | \( 1 - 4iT - 43T^{2} \) |
| 47 | \( 1 - 8.48T + 47T^{2} \) |
| 53 | \( 1 + 7.07iT - 53T^{2} \) |
| 59 | \( 1 + 2.82T + 59T^{2} \) |
| 61 | \( 1 + 3.46T + 61T^{2} \) |
| 67 | \( 1 + 15.4iT - 67T^{2} \) |
| 71 | \( 1 + 4.52T + 71T^{2} \) |
| 73 | \( 1 - 0.535T + 73T^{2} \) |
| 79 | \( 1 + 10.3iT - 79T^{2} \) |
| 83 | \( 1 - 11.8T + 83T^{2} \) |
| 89 | \( 1 + 3.86iT - 89T^{2} \) |
| 97 | \( 1 - 11.4T + 97T^{2} \) |
| show more | |
| show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−10.42717547822207812572303553388, −9.248635650029616562007303553545, −8.733023255219686584228154074792, −7.42333672324379781142074520351, −6.63558125176530635589335008936, −6.35007512931430215602049707083, −4.97695272468175226707652098288, −3.62682589717484680371591438590, −3.04649476514689913834087011973, −1.67878221185208099420586179220,
0.830374231802114226653387843644, 1.80691232043269650224597286013, 3.89930167377660928251689358373, 4.18411049522223509031620944185, 5.46913007787144341517346949418, 6.14241584938693963088013465789, 7.34280191211232291904499119700, 8.268617038622343057855589274916, 8.955373274219018990707985710724, 9.510070202362931138620399488757