Properties

Label 2-1008-1.1-c5-0-11
Degree $2$
Conductor $1008$
Sign $1$
Analytic cond. $161.666$
Root an. cond. $12.7148$
Motivic weight $5$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 10·5-s + 49·7-s − 340·11-s − 294·13-s − 1.22e3·17-s − 2.43e3·19-s + 2.00e3·23-s − 3.02e3·25-s + 6.74e3·29-s − 8.85e3·31-s − 490·35-s + 9.18e3·37-s + 1.45e4·41-s − 8.10e3·43-s − 312·47-s + 2.40e3·49-s + 1.46e4·53-s + 3.40e3·55-s − 2.76e4·59-s + 3.43e4·61-s + 2.94e3·65-s − 1.23e4·67-s + 3.69e4·71-s − 6.17e4·73-s − 1.66e4·77-s + 6.47e4·79-s − 7.70e4·83-s + ⋯
L(s)  = 1  − 0.178·5-s + 0.377·7-s − 0.847·11-s − 0.482·13-s − 1.02·17-s − 1.54·19-s + 0.788·23-s − 0.967·25-s + 1.48·29-s − 1.65·31-s − 0.0676·35-s + 1.10·37-s + 1.35·41-s − 0.668·43-s − 0.0206·47-s + 1/7·49-s + 0.715·53-s + 0.151·55-s − 1.03·59-s + 1.18·61-s + 0.0863·65-s − 0.335·67-s + 0.869·71-s − 1.35·73-s − 0.320·77-s + 1.16·79-s − 1.22·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(6-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+5/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(161.666\)
Root analytic conductor: \(12.7148\)
Motivic weight: \(5\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :5/2),\ 1)\)

Particular Values

\(L(3)\) \(\approx\) \(1.283948706\)
\(L(\frac12)\) \(\approx\) \(1.283948706\)
\(L(\frac{7}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - p^{2} T \)
good5 \( 1 + 2 p T + p^{5} T^{2} \)
11 \( 1 + 340 T + p^{5} T^{2} \)
13 \( 1 + 294 T + p^{5} T^{2} \)
17 \( 1 + 1226 T + p^{5} T^{2} \)
19 \( 1 + 128 p T + p^{5} T^{2} \)
23 \( 1 - 2000 T + p^{5} T^{2} \)
29 \( 1 - 6746 T + p^{5} T^{2} \)
31 \( 1 + 8856 T + p^{5} T^{2} \)
37 \( 1 - 9182 T + p^{5} T^{2} \)
41 \( 1 - 14574 T + p^{5} T^{2} \)
43 \( 1 + 8108 T + p^{5} T^{2} \)
47 \( 1 + 312 T + p^{5} T^{2} \)
53 \( 1 - 14634 T + p^{5} T^{2} \)
59 \( 1 + 27656 T + p^{5} T^{2} \)
61 \( 1 - 34338 T + p^{5} T^{2} \)
67 \( 1 + 12316 T + p^{5} T^{2} \)
71 \( 1 - 520 p T + p^{5} T^{2} \)
73 \( 1 + 61718 T + p^{5} T^{2} \)
79 \( 1 - 64752 T + p^{5} T^{2} \)
83 \( 1 + 77056 T + p^{5} T^{2} \)
89 \( 1 - 8166 T + p^{5} T^{2} \)
97 \( 1 - 20650 T + p^{5} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.129084552063941351843545219823, −8.390998719207132445598034014327, −7.61659959180261779031617059981, −6.75720654148120326759521435714, −5.79734911028868829429511381154, −4.78309668990670809706097811050, −4.10757620990714873536279163862, −2.72845301430736139272729943890, −1.95815316574250326082369139107, −0.47139862332024387119970607919, 0.47139862332024387119970607919, 1.95815316574250326082369139107, 2.72845301430736139272729943890, 4.10757620990714873536279163862, 4.78309668990670809706097811050, 5.79734911028868829429511381154, 6.75720654148120326759521435714, 7.61659959180261779031617059981, 8.390998719207132445598034014327, 9.129084552063941351843545219823

Graph of the $Z$-function along the critical line