Properties

Label 2-1008-1.1-c3-0-0
Degree $2$
Conductor $1008$
Sign $1$
Analytic cond. $59.4739$
Root an. cond. $7.71193$
Motivic weight $3$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 18·5-s − 7·7-s − 72·11-s − 34·13-s − 6·17-s − 92·19-s − 180·23-s + 199·25-s + 114·29-s − 56·31-s + 126·35-s − 34·37-s − 6·41-s − 164·43-s + 168·47-s + 49·49-s − 654·53-s + 1.29e3·55-s − 492·59-s − 250·61-s + 612·65-s + 124·67-s + 36·71-s + 1.01e3·73-s + 504·77-s − 56·79-s + 228·83-s + ⋯
L(s)  = 1  − 1.60·5-s − 0.377·7-s − 1.97·11-s − 0.725·13-s − 0.0856·17-s − 1.11·19-s − 1.63·23-s + 1.59·25-s + 0.729·29-s − 0.324·31-s + 0.608·35-s − 0.151·37-s − 0.0228·41-s − 0.581·43-s + 0.521·47-s + 1/7·49-s − 1.69·53-s + 3.17·55-s − 1.08·59-s − 0.524·61-s + 1.16·65-s + 0.226·67-s + 0.0601·71-s + 1.61·73-s + 0.745·77-s − 0.0797·79-s + 0.301·83-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(59.4739\)
Root analytic conductor: \(7.71193\)
Motivic weight: \(3\)
Rational: yes
Arithmetic: yes
Character: $\chi_{1008} (1, \cdot )$
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :3/2),\ 1)\)

Particular Values

\(L(2)\) \(\approx\) \(0.1211307449\)
\(L(\frac12)\) \(\approx\) \(0.1211307449\)
\(L(\frac{5}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 + p T \)
good5 \( 1 + 18 T + p^{3} T^{2} \)
11 \( 1 + 72 T + p^{3} T^{2} \)
13 \( 1 + 34 T + p^{3} T^{2} \)
17 \( 1 + 6 T + p^{3} T^{2} \)
19 \( 1 + 92 T + p^{3} T^{2} \)
23 \( 1 + 180 T + p^{3} T^{2} \)
29 \( 1 - 114 T + p^{3} T^{2} \)
31 \( 1 + 56 T + p^{3} T^{2} \)
37 \( 1 + 34 T + p^{3} T^{2} \)
41 \( 1 + 6 T + p^{3} T^{2} \)
43 \( 1 + 164 T + p^{3} T^{2} \)
47 \( 1 - 168 T + p^{3} T^{2} \)
53 \( 1 + 654 T + p^{3} T^{2} \)
59 \( 1 + 492 T + p^{3} T^{2} \)
61 \( 1 + 250 T + p^{3} T^{2} \)
67 \( 1 - 124 T + p^{3} T^{2} \)
71 \( 1 - 36 T + p^{3} T^{2} \)
73 \( 1 - 1010 T + p^{3} T^{2} \)
79 \( 1 + 56 T + p^{3} T^{2} \)
83 \( 1 - 228 T + p^{3} T^{2} \)
89 \( 1 + 390 T + p^{3} T^{2} \)
97 \( 1 + 70 T + p^{3} T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.695405985698801361712689478116, −8.386927936121197134401679632456, −7.972419849472358323371903806287, −7.31228432294166954801194282258, −6.24409825871874111606320585730, −5.04154671996810302421728666969, −4.30023759576056871839957999833, −3.26887298213722155725537289624, −2.29494024570458490536109231618, −0.17089014794281650893525064540, 0.17089014794281650893525064540, 2.29494024570458490536109231618, 3.26887298213722155725537289624, 4.30023759576056871839957999833, 5.04154671996810302421728666969, 6.24409825871874111606320585730, 7.31228432294166954801194282258, 7.972419849472358323371903806287, 8.386927936121197134401679632456, 9.695405985698801361712689478116

Graph of the $Z$-function along the critical line