Properties

Label 2-1008-1.1-c1-0-5
Degree $2$
Conductor $1008$
Sign $1$
Analytic cond. $8.04892$
Root an. cond. $2.83706$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2·5-s + 7-s − 2·11-s + 2·13-s + 6·17-s + 4·19-s − 6·23-s − 25-s + 4·31-s + 2·35-s + 10·37-s + 2·41-s + 4·43-s − 4·47-s + 49-s − 12·53-s − 4·55-s − 12·59-s + 6·61-s + 4·65-s + 4·67-s + 14·71-s − 2·73-s − 2·77-s + 8·79-s + 16·83-s + 12·85-s + ⋯
L(s)  = 1  + 0.894·5-s + 0.377·7-s − 0.603·11-s + 0.554·13-s + 1.45·17-s + 0.917·19-s − 1.25·23-s − 1/5·25-s + 0.718·31-s + 0.338·35-s + 1.64·37-s + 0.312·41-s + 0.609·43-s − 0.583·47-s + 1/7·49-s − 1.64·53-s − 0.539·55-s − 1.56·59-s + 0.768·61-s + 0.496·65-s + 0.488·67-s + 1.66·71-s − 0.234·73-s − 0.227·77-s + 0.900·79-s + 1.75·83-s + 1.30·85-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 1008 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(1008\)    =    \(2^{4} \cdot 3^{2} \cdot 7\)
Sign: $1$
Analytic conductor: \(8.04892\)
Root analytic conductor: \(2.83706\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 1008,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.021268337\)
\(L(\frac12)\) \(\approx\) \(2.021268337\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$Isogeny Class over $\mathbf{F}_p$
bad2 \( 1 \)
3 \( 1 \)
7 \( 1 - T \)
good5 \( 1 - 2 T + p T^{2} \) 1.5.ac
11 \( 1 + 2 T + p T^{2} \) 1.11.c
13 \( 1 - 2 T + p T^{2} \) 1.13.ac
17 \( 1 - 6 T + p T^{2} \) 1.17.ag
19 \( 1 - 4 T + p T^{2} \) 1.19.ae
23 \( 1 + 6 T + p T^{2} \) 1.23.g
29 \( 1 + p T^{2} \) 1.29.a
31 \( 1 - 4 T + p T^{2} \) 1.31.ae
37 \( 1 - 10 T + p T^{2} \) 1.37.ak
41 \( 1 - 2 T + p T^{2} \) 1.41.ac
43 \( 1 - 4 T + p T^{2} \) 1.43.ae
47 \( 1 + 4 T + p T^{2} \) 1.47.e
53 \( 1 + 12 T + p T^{2} \) 1.53.m
59 \( 1 + 12 T + p T^{2} \) 1.59.m
61 \( 1 - 6 T + p T^{2} \) 1.61.ag
67 \( 1 - 4 T + p T^{2} \) 1.67.ae
71 \( 1 - 14 T + p T^{2} \) 1.71.ao
73 \( 1 + 2 T + p T^{2} \) 1.73.c
79 \( 1 - 8 T + p T^{2} \) 1.79.ai
83 \( 1 - 16 T + p T^{2} \) 1.83.aq
89 \( 1 + 6 T + p T^{2} \) 1.89.g
97 \( 1 + 18 T + p T^{2} \) 1.97.s
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−9.818151445135231115814034817807, −9.437752301009204937027256546920, −8.016710564482448925343947507213, −7.79064855464535275520223516342, −6.32147524527224537125089512133, −5.73569194086517270564919024713, −4.88053771103235633099685381109, −3.60698435135707065201863764202, −2.45683901738953215093540180120, −1.23073197938907604520302484273, 1.23073197938907604520302484273, 2.45683901738953215093540180120, 3.60698435135707065201863764202, 4.88053771103235633099685381109, 5.73569194086517270564919024713, 6.32147524527224537125089512133, 7.79064855464535275520223516342, 8.016710564482448925343947507213, 9.437752301009204937027256546920, 9.818151445135231115814034817807

Graph of the $Z$-function along the critical line