Properties

Label 2-100254-1.1-c1-0-30
Degree $2$
Conductor $100254$
Sign $1$
Analytic cond. $800.532$
Root an. cond. $28.2936$
Motivic weight $1$
Arithmetic yes
Rational yes
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 2-s − 3-s + 4-s + 6-s − 8-s + 9-s + 11-s − 12-s − 2·13-s + 16-s + 5·17-s − 18-s + 8·19-s − 22-s + 8·23-s + 24-s − 5·25-s + 2·26-s − 27-s − 2·29-s + 31-s − 32-s − 33-s − 5·34-s + 36-s − 5·37-s − 8·38-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.577·3-s + 1/2·4-s + 0.408·6-s − 0.353·8-s + 1/3·9-s + 0.301·11-s − 0.288·12-s − 0.554·13-s + 1/4·16-s + 1.21·17-s − 0.235·18-s + 1.83·19-s − 0.213·22-s + 1.66·23-s + 0.204·24-s − 25-s + 0.392·26-s − 0.192·27-s − 0.371·29-s + 0.179·31-s − 0.176·32-s − 0.174·33-s − 0.857·34-s + 1/6·36-s − 0.821·37-s − 1.29·38-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 100254 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(2-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 100254 ^{s/2} \, \Gamma_{\C}(s+1/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(100254\)    =    \(2 \cdot 3 \cdot 7^{2} \cdot 11 \cdot 31\)
Sign: $1$
Analytic conductor: \(800.532\)
Root analytic conductor: \(28.2936\)
Motivic weight: \(1\)
Rational: yes
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 100254,\ (\ :1/2),\ 1)\)

Particular Values

\(L(1)\) \(\approx\) \(2.063508681\)
\(L(\frac12)\) \(\approx\) \(2.063508681\)
\(L(\frac{3}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + T \)
3 \( 1 + T \)
7 \( 1 \)
11 \( 1 - T \)
31 \( 1 - T \)
good5 \( 1 + p T^{2} \)
13 \( 1 + 2 T + p T^{2} \)
17 \( 1 - 5 T + p T^{2} \)
19 \( 1 - 8 T + p T^{2} \)
23 \( 1 - 8 T + p T^{2} \)
29 \( 1 + 2 T + p T^{2} \)
37 \( 1 + 5 T + p T^{2} \)
41 \( 1 - 8 T + p T^{2} \)
43 \( 1 - 11 T + p T^{2} \)
47 \( 1 + 12 T + p T^{2} \)
53 \( 1 - 13 T + p T^{2} \)
59 \( 1 - 4 T + p T^{2} \)
61 \( 1 + 4 T + p T^{2} \)
67 \( 1 - 8 T + p T^{2} \)
71 \( 1 + p T^{2} \)
73 \( 1 - 3 T + p T^{2} \)
79 \( 1 - 8 T + p T^{2} \)
83 \( 1 - 16 T + p T^{2} \)
89 \( 1 - 14 T + p T^{2} \)
97 \( 1 + 5 T + p T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.64549826477173, −13.32156831718766, −12.52475483337463, −12.13126126469308, −11.85057096921429, −11.15728550594026, −10.95322046367564, −10.15452393331202, −9.837770159991591, −9.269448700579452, −9.087344284650949, −8.075460469214976, −7.749167092961270, −7.220539270474656, −6.897788821227214, −6.120296353667006, −5.525833997150449, −5.257659260001451, −4.585361849182189, −3.661202254789226, −3.300657542236091, −2.540199297995157, −1.795722848376833, −0.9250737947792183, −0.7054465974150164, 0.7054465974150164, 0.9250737947792183, 1.795722848376833, 2.540199297995157, 3.300657542236091, 3.661202254789226, 4.585361849182189, 5.257659260001451, 5.525833997150449, 6.120296353667006, 6.897788821227214, 7.220539270474656, 7.749167092961270, 8.075460469214976, 9.087344284650949, 9.269448700579452, 9.837770159991591, 10.15452393331202, 10.95322046367564, 11.15728550594026, 11.85057096921429, 12.13126126469308, 12.52475483337463, 13.32156831718766, 13.64549826477173

Graph of the $Z$-function along the critical line