L(s) = 1 | − 2i·2-s + 2i·3-s − 4·4-s + (−5 + 10i)5-s + 4·6-s − 26i·7-s + 8i·8-s + 23·9-s + (20 + 10i)10-s − 28·11-s − 8i·12-s + 12i·13-s − 52·14-s + (−20 − 10i)15-s + 16·16-s + 64i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 0.384i·3-s − 0.5·4-s + (−0.447 + 0.894i)5-s + 0.272·6-s − 1.40i·7-s + 0.353i·8-s + 0.851·9-s + (0.632 + 0.316i)10-s − 0.767·11-s − 0.192i·12-s + 0.256i·13-s − 0.992·14-s + (−0.344 − 0.172i)15-s + 0.250·16-s + 0.913i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(4-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+3/2) \, L(s)\cr =\mathstrut & (0.894 + 0.447i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(2)\) |
\(\approx\) |
\(0.793233 - 0.187257i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.793233 - 0.187257i\) |
\(L(\frac{5}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 2iT \) |
| 5 | \( 1 + (5 - 10i)T \) |
good | 3 | \( 1 - 2iT - 27T^{2} \) |
| 7 | \( 1 + 26iT - 343T^{2} \) |
| 11 | \( 1 + 28T + 1.33e3T^{2} \) |
| 13 | \( 1 - 12iT - 2.19e3T^{2} \) |
| 17 | \( 1 - 64iT - 4.91e3T^{2} \) |
| 19 | \( 1 - 60T + 6.85e3T^{2} \) |
| 23 | \( 1 + 58iT - 1.21e4T^{2} \) |
| 29 | \( 1 + 90T + 2.43e4T^{2} \) |
| 31 | \( 1 + 128T + 2.97e4T^{2} \) |
| 37 | \( 1 + 236iT - 5.06e4T^{2} \) |
| 41 | \( 1 - 242T + 6.89e4T^{2} \) |
| 43 | \( 1 - 362iT - 7.95e4T^{2} \) |
| 47 | \( 1 + 226iT - 1.03e5T^{2} \) |
| 53 | \( 1 + 108iT - 1.48e5T^{2} \) |
| 59 | \( 1 - 20T + 2.05e5T^{2} \) |
| 61 | \( 1 - 542T + 2.26e5T^{2} \) |
| 67 | \( 1 - 434iT - 3.00e5T^{2} \) |
| 71 | \( 1 + 1.12e3T + 3.57e5T^{2} \) |
| 73 | \( 1 - 632iT - 3.89e5T^{2} \) |
| 79 | \( 1 - 720T + 4.93e5T^{2} \) |
| 83 | \( 1 + 478iT - 5.71e5T^{2} \) |
| 89 | \( 1 - 490T + 7.04e5T^{2} \) |
| 97 | \( 1 + 1.45e3iT - 9.12e5T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.49393296500168893853370391538, −19.24234170159821737585396352626, −17.98633281071982953329448072587, −16.21971445973795486680043857101, −14.56566335222668874528233179028, −13.04587947367273779802550776539, −10.98819281810985439264008946563, −10.10423520548203916488377750395, −7.43215939908228079028033812646, −3.96135615060000715278264354271,
5.30666260524625395791180327754, 7.68917674492804863897978674182, 9.264129044356701969990396274366, 12.08341892017131722999543459693, 13.24272907549937557694067291051, 15.36501571992824630772995142126, 16.12713599752384189961533448556, 18.00134541967902288543044622023, 18.93994862899296652043141094959, 20.75404921372514853975775707566