L(s) = 1 | − 4.09e3i·2-s − 1.08e6i·3-s − 1.67e7·4-s + (3.02e8 + 4.54e8i)5-s − 4.42e9·6-s + 5.43e10i·7-s + 6.87e10i·8-s − 3.19e11·9-s + (1.86e12 − 1.23e12i)10-s − 3.24e12·11-s + 1.81e13i·12-s − 7.83e13i·13-s + 2.22e14·14-s + (4.90e14 − 3.26e14i)15-s + 2.81e14·16-s − 4.33e15i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s − 1.17i·3-s − 0.5·4-s + (0.554 + 0.832i)5-s − 0.829·6-s + 1.48i·7-s + 0.353i·8-s − 0.377·9-s + (0.588 − 0.391i)10-s − 0.311·11-s + 0.586i·12-s − 0.932i·13-s + 1.04·14-s + (0.976 − 0.650i)15-s + 0.250·16-s − 1.80i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.832 + 0.554i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (-0.832 + 0.554i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.680922401\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.680922401\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4.09e3iT \) |
| 5 | \( 1 + (-3.02e8 - 4.54e8i)T \) |
good | 3 | \( 1 + 1.08e6iT - 8.47e11T^{2} \) |
| 7 | \( 1 - 5.43e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 3.24e12T + 1.08e26T^{2} \) |
| 13 | \( 1 + 7.83e13iT - 7.05e27T^{2} \) |
| 17 | \( 1 + 4.33e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 + 8.87e15T + 9.30e31T^{2} \) |
| 23 | \( 1 + 7.05e16iT - 1.10e34T^{2} \) |
| 29 | \( 1 - 1.11e18T + 3.63e36T^{2} \) |
| 31 | \( 1 - 6.30e18T + 1.92e37T^{2} \) |
| 37 | \( 1 + 1.55e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 + 3.82e19T + 2.08e40T^{2} \) |
| 43 | \( 1 + 3.32e20iT - 6.86e40T^{2} \) |
| 47 | \( 1 + 1.01e21iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 3.43e21iT - 1.27e43T^{2} \) |
| 59 | \( 1 + 4.09e21T + 1.86e44T^{2} \) |
| 61 | \( 1 - 3.14e22T + 4.29e44T^{2} \) |
| 67 | \( 1 - 1.01e23iT - 4.48e45T^{2} \) |
| 71 | \( 1 - 2.10e23T + 1.91e46T^{2} \) |
| 73 | \( 1 + 1.56e23iT - 3.82e46T^{2} \) |
| 79 | \( 1 + 6.00e22T + 2.75e47T^{2} \) |
| 83 | \( 1 - 7.40e23iT - 9.48e47T^{2} \) |
| 89 | \( 1 + 3.21e24T + 5.42e48T^{2} \) |
| 97 | \( 1 + 5.32e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−13.87236572299090109891194606974, −12.71424536878652317712436764746, −11.67962470663177634298721341658, −10.05603040562248664153373248341, −8.428486773459191756039542905798, −6.77030513099262456585126097058, −5.39715016337200091938986744390, −2.73035937751645888533419825930, −2.21208734750881956932416112428, −0.51440054404701933124201165982,
1.27066684019661583230237795593, 4.00810229415146463704744948073, 4.66340108303199837851136257039, 6.37287996471786296848069900468, 8.225330184264824418588629141151, 9.658921550965568600161136106927, 10.59936336221846833356843329490, 12.98613512955200363180129285159, 14.17397780615487213232238113067, 15.60792001111095505592873150970