L(s) = 1 | + 4.09e3i·2-s − 1.01e6i·3-s − 1.67e7·4-s + (−2.64e8 + 4.77e8i)5-s + 4.16e9·6-s − 1.16e10i·7-s − 6.87e10i·8-s − 1.86e11·9-s + (−1.95e12 − 1.08e12i)10-s − 5.94e12·11-s + 1.70e13i·12-s + 8.19e13i·13-s + 4.76e13·14-s + (4.85e14 + 2.68e14i)15-s + 2.81e14·16-s + 1.37e15i·17-s + ⋯ |
L(s) = 1 | + 0.707i·2-s − 1.10i·3-s − 0.5·4-s + (−0.483 + 0.875i)5-s + 0.781·6-s − 0.317i·7-s − 0.353i·8-s − 0.220·9-s + (−0.618 − 0.341i)10-s − 0.571·11-s + 0.552i·12-s + 0.975i·13-s + 0.224·14-s + (0.966 + 0.534i)15-s + 0.250·16-s + 0.573i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (0.875 + 0.483i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.420936347\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.420936347\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 - 4.09e3iT \) |
| 5 | \( 1 + (2.64e8 - 4.77e8i)T \) |
good | 3 | \( 1 + 1.01e6iT - 8.47e11T^{2} \) |
| 7 | \( 1 + 1.16e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 + 5.94e12T + 1.08e26T^{2} \) |
| 13 | \( 1 - 8.19e13iT - 7.05e27T^{2} \) |
| 17 | \( 1 - 1.37e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 + 4.66e15T + 9.30e31T^{2} \) |
| 23 | \( 1 + 9.70e16iT - 1.10e34T^{2} \) |
| 29 | \( 1 - 1.92e18T + 3.63e36T^{2} \) |
| 31 | \( 1 - 5.14e18T + 1.92e37T^{2} \) |
| 37 | \( 1 + 4.77e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 - 1.13e20T + 2.08e40T^{2} \) |
| 43 | \( 1 + 9.41e18iT - 6.86e40T^{2} \) |
| 47 | \( 1 + 1.09e21iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 6.11e20iT - 1.27e43T^{2} \) |
| 59 | \( 1 - 1.74e22T + 1.86e44T^{2} \) |
| 61 | \( 1 - 2.94e21T + 4.29e44T^{2} \) |
| 67 | \( 1 + 5.85e22iT - 4.48e45T^{2} \) |
| 71 | \( 1 + 2.27e23T + 1.91e46T^{2} \) |
| 73 | \( 1 - 2.69e23iT - 3.82e46T^{2} \) |
| 79 | \( 1 - 9.35e23T + 2.75e47T^{2} \) |
| 83 | \( 1 + 1.71e24iT - 9.48e47T^{2} \) |
| 89 | \( 1 - 2.89e24T + 5.42e48T^{2} \) |
| 97 | \( 1 - 1.13e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−14.62278363480230416529980222755, −13.49696116452182446868366066979, −12.13260127987574583706123283590, −10.43717566877528569964570571321, −8.301116722459369901708817894112, −7.15929695459820799084733309581, −6.34551946189240074092743367917, −4.20018470983299807519438315883, −2.30257994124197262788793532345, −0.54616320793538293497226133873,
0.926754111223494282149123381427, 2.93161057185239182824843084224, 4.32530253280500704028038155227, 5.29521838830630186431335440827, 8.101994810451973977270613653402, 9.413290575838990661920539614793, 10.55129936806529882032030297340, 11.98907499084034898484831378348, 13.26709289038046915587445773562, 15.23883267053778326418099410524