L(s) = 1 | − 4.09e3i·2-s + 1.08e6i·3-s − 1.67e7·4-s + (−2.09e8 + 5.04e8i)5-s + 4.45e9·6-s + 4.89e10i·7-s + 6.87e10i·8-s − 3.34e11·9-s + (2.06e12 + 8.58e11i)10-s + 1.14e13·11-s − 1.82e13i·12-s + 1.28e14i·13-s + 2.00e14·14-s + (−5.47e14 − 2.27e14i)15-s + 2.81e14·16-s + 3.78e15i·17-s + ⋯ |
L(s) = 1 | − 0.707i·2-s + 1.18i·3-s − 0.5·4-s + (−0.383 + 0.923i)5-s + 0.835·6-s + 1.33i·7-s + 0.353i·8-s − 0.394·9-s + (0.652 + 0.271i)10-s + 1.10·11-s − 0.590i·12-s + 1.52i·13-s + 0.945·14-s + (−1.09 − 0.453i)15-s + 0.250·16-s + 1.57i·17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.923 - 0.383i)\, \overline{\Lambda}(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & (-0.923 - 0.383i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(13)\) |
\(\approx\) |
\(1.736292756\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.736292756\) |
\(L(\frac{27}{2})\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + 4.09e3iT \) |
| 5 | \( 1 + (2.09e8 - 5.04e8i)T \) |
good | 3 | \( 1 - 1.08e6iT - 8.47e11T^{2} \) |
| 7 | \( 1 - 4.89e10iT - 1.34e21T^{2} \) |
| 11 | \( 1 - 1.14e13T + 1.08e26T^{2} \) |
| 13 | \( 1 - 1.28e14iT - 7.05e27T^{2} \) |
| 17 | \( 1 - 3.78e15iT - 5.77e30T^{2} \) |
| 19 | \( 1 - 1.02e16T + 9.30e31T^{2} \) |
| 23 | \( 1 + 1.81e17iT - 1.10e34T^{2} \) |
| 29 | \( 1 + 2.19e18T + 3.63e36T^{2} \) |
| 31 | \( 1 - 2.89e18T + 1.92e37T^{2} \) |
| 37 | \( 1 - 4.56e19iT - 1.60e39T^{2} \) |
| 41 | \( 1 + 4.22e18T + 2.08e40T^{2} \) |
| 43 | \( 1 - 1.22e19iT - 6.86e40T^{2} \) |
| 47 | \( 1 - 4.60e20iT - 6.34e41T^{2} \) |
| 53 | \( 1 + 2.54e21iT - 1.27e43T^{2} \) |
| 59 | \( 1 - 2.20e21T + 1.86e44T^{2} \) |
| 61 | \( 1 - 7.41e21T + 4.29e44T^{2} \) |
| 67 | \( 1 + 6.01e22iT - 4.48e45T^{2} \) |
| 71 | \( 1 - 3.59e22T + 1.91e46T^{2} \) |
| 73 | \( 1 + 1.98e23iT - 3.82e46T^{2} \) |
| 79 | \( 1 - 7.84e23T + 2.75e47T^{2} \) |
| 83 | \( 1 + 4.60e23iT - 9.48e47T^{2} \) |
| 89 | \( 1 + 5.94e23T + 5.42e48T^{2} \) |
| 97 | \( 1 + 8.71e24iT - 4.66e49T^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−15.20091443597688812358307381776, −14.40609180095253654814629851564, −12.12553904510257564857110198575, −11.15828913378639232702672048351, −9.801434825655895616201000220696, −8.742854435306203558544389162421, −6.33060047635509501127809841407, −4.45444854442630657853519353231, −3.42023671624776729608996587988, −1.92829890306561245638169520314,
0.61107436700693429559351187088, 1.11650476265713127741070073633, 3.73930868362870722723133905791, 5.38951166417021480369549848168, 7.20673926993925637102437086111, 7.72493197197274905152943347575, 9.506616825257490031707822571769, 11.74664333832208700734733677894, 13.12703234702800444727696547278, 13.88168160011231437970817076402