L(s) = 1 | + (−2 + 2i)2-s + (9 + 9i)3-s − 8i·4-s + (−15 − 20i)5-s − 36·6-s + (29 − 29i)7-s + (16 + 16i)8-s + 81i·9-s + (70 + 10i)10-s − 118·11-s + (72 − 72i)12-s + (69 + 69i)13-s + 116i·14-s + (45 − 315i)15-s − 64·16-s + (−271 + 271i)17-s + ⋯ |
L(s) = 1 | + (−0.5 + 0.5i)2-s + (1 + i)3-s − 0.5i·4-s + (−0.599 − 0.800i)5-s − 6-s + (0.591 − 0.591i)7-s + (0.250 + 0.250i)8-s + i·9-s + (0.700 + 0.100i)10-s − 0.975·11-s + (0.5 − 0.5i)12-s + (0.408 + 0.408i)13-s + 0.591i·14-s + (0.200 − 1.39i)15-s − 0.250·16-s + (−0.937 + 0.937i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.640 - 0.767i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.640 - 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(0.905951 + 0.423920i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.905951 + 0.423920i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (2 - 2i)T \) |
| 5 | \( 1 + (15 + 20i)T \) |
good | 3 | \( 1 + (-9 - 9i)T + 81iT^{2} \) |
| 7 | \( 1 + (-29 + 29i)T - 2.40e3iT^{2} \) |
| 11 | \( 1 + 118T + 1.46e4T^{2} \) |
| 13 | \( 1 + (-69 - 69i)T + 2.85e4iT^{2} \) |
| 17 | \( 1 + (271 - 271i)T - 8.35e4iT^{2} \) |
| 19 | \( 1 + 280iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (-269 - 269i)T + 2.79e5iT^{2} \) |
| 29 | \( 1 + 680iT - 7.07e5T^{2} \) |
| 31 | \( 1 - 202T + 9.23e5T^{2} \) |
| 37 | \( 1 + (651 - 651i)T - 1.87e6iT^{2} \) |
| 41 | \( 1 - 1.68e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (-1.08e3 - 1.08e3i)T + 3.41e6iT^{2} \) |
| 47 | \( 1 + (-1.26e3 + 1.26e3i)T - 4.87e6iT^{2} \) |
| 53 | \( 1 + (611 + 611i)T + 7.89e6iT^{2} \) |
| 59 | \( 1 + 1.16e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 + 5.59e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (751 - 751i)T - 2.01e7iT^{2} \) |
| 71 | \( 1 - 6.44e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (2.95e3 + 2.95e3i)T + 2.83e7iT^{2} \) |
| 79 | \( 1 + 1.05e4iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (6.23e3 + 6.23e3i)T + 4.74e7iT^{2} \) |
| 89 | \( 1 - 1.44e4iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (7.31e3 - 7.31e3i)T - 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.40927505534607014480708864434, −19.37004415030012598391470815480, −17.39657263892531068990599874961, −15.92584702397339250974258949644, −15.14653380220326052994219103775, −13.50900885747239028179362041665, −10.84596160869241973199237549649, −9.104051683033048217187035624946, −7.961397833103900235480438224705, −4.46846646297317084744423291953,
2.63299884198847838915051193532, 7.41236298354186449641074172392, 8.576419223140330273316556010163, 10.92683241127515175220492978638, 12.56296324811360941388841825951, 14.09689758628053902298710611143, 15.58359723051238049094321415300, 18.17528192393846041571962560345, 18.57683806843483705103387378519, 19.83766310813537809024435622667