L(s) = 1 | + (16 − 16i)2-s + (−183 − 183i)3-s − 512i·4-s + (−1.87e3 + 2.50e3i)5-s − 5.85e3·6-s + (−8.40e3 + 8.40e3i)7-s + (−8.19e3 − 8.19e3i)8-s + 7.92e3i·9-s + (1.00e4 + 7.00e4i)10-s − 1.73e5·11-s + (−9.36e4 + 9.36e4i)12-s + (−2.32e5 − 2.32e5i)13-s + 2.69e5i·14-s + (8.00e5 − 1.14e5i)15-s − 2.62e5·16-s + (1.88e6 − 1.88e6i)17-s + ⋯ |
L(s) = 1 | + (0.5 − 0.5i)2-s + (−0.753 − 0.753i)3-s − 0.5i·4-s + (−0.600 + 0.800i)5-s − 0.753·6-s + (−0.500 + 0.500i)7-s + (−0.250 − 0.250i)8-s + 0.134i·9-s + (0.100 + 0.700i)10-s − 1.07·11-s + (−0.376 + 0.376i)12-s + (−0.626 − 0.626i)13-s + 0.500i·14-s + (1.05 − 0.150i)15-s − 0.250·16-s + (1.32 − 1.32i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.916 - 0.400i)\, \overline{\Lambda}(11-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+5) \, L(s)\cr =\mathstrut & (-0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{11}{2})\) |
\(\approx\) |
\(0.0859747 + 0.411764i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.0859747 + 0.411764i\) |
\(L(6)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-16 + 16i)T \) |
| 5 | \( 1 + (1.87e3 - 2.50e3i)T \) |
good | 3 | \( 1 + (183 + 183i)T + 5.90e4iT^{2} \) |
| 7 | \( 1 + (8.40e3 - 8.40e3i)T - 2.82e8iT^{2} \) |
| 11 | \( 1 + 1.73e5T + 2.59e10T^{2} \) |
| 13 | \( 1 + (2.32e5 + 2.32e5i)T + 1.37e11iT^{2} \) |
| 17 | \( 1 + (-1.88e6 + 1.88e6i)T - 2.01e12iT^{2} \) |
| 19 | \( 1 - 1.10e6iT - 6.13e12T^{2} \) |
| 23 | \( 1 + (5.22e6 + 5.22e6i)T + 4.14e13iT^{2} \) |
| 29 | \( 1 - 2.47e7iT - 4.20e14T^{2} \) |
| 31 | \( 1 + 1.00e7T + 8.19e14T^{2} \) |
| 37 | \( 1 + (-5.63e7 + 5.63e7i)T - 4.80e15iT^{2} \) |
| 41 | \( 1 + 1.53e8T + 1.34e16T^{2} \) |
| 43 | \( 1 + (-5.93e7 - 5.93e7i)T + 2.16e16iT^{2} \) |
| 47 | \( 1 + (-1.72e8 + 1.72e8i)T - 5.25e16iT^{2} \) |
| 53 | \( 1 + (-1.96e8 - 1.96e8i)T + 1.74e17iT^{2} \) |
| 59 | \( 1 + 6.94e8iT - 5.11e17T^{2} \) |
| 61 | \( 1 - 9.06e8T + 7.13e17T^{2} \) |
| 67 | \( 1 + (9.62e8 - 9.62e8i)T - 1.82e18iT^{2} \) |
| 71 | \( 1 + 3.12e9T + 3.25e18T^{2} \) |
| 73 | \( 1 + (6.36e8 + 6.36e8i)T + 4.29e18iT^{2} \) |
| 79 | \( 1 - 1.96e9iT - 9.46e18T^{2} \) |
| 83 | \( 1 + (5.18e9 + 5.18e9i)T + 1.55e19iT^{2} \) |
| 89 | \( 1 + 7.77e9iT - 3.11e19T^{2} \) |
| 97 | \( 1 + (6.40e8 - 6.40e8i)T - 7.37e19iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−18.23498356647136324701241640361, −16.06842489748991662543680974712, −14.55785196726634088092852042834, −12.69033673523140136186095112993, −11.83386948381122037982389703625, −10.26104920901986566020196732926, −7.35077607274388347352801449420, −5.63607573809750764452176700342, −2.91353861480390921986173232870, −0.21298830104623525771142697366,
4.11258631128076034722736884796, 5.51890087363622651618771930643, 7.82031297319141331675296873376, 10.08791032879372778294701243055, 11.86043780059560216164986306203, 13.29615959638143144285255479439, 15.31579883164481178863418187891, 16.38129556966235166425389175243, 17.09951454350802975732890847444, 19.35384534432907741148630021168