L(s) = 1 | + (−4 − 4i)2-s + (−23 + 23i)3-s + 32i·4-s + (−75 + 100i)5-s + 184·6-s + (−247 − 247i)7-s + (128 − 128i)8-s − 329i·9-s + (700 − 100i)10-s + 1.40e3·11-s + (−736 − 736i)12-s + (−2.70e3 + 2.70e3i)13-s + 1.97e3i·14-s + (−575 − 4.02e3i)15-s − 1.02e3·16-s + (2.59e3 + 2.59e3i)17-s + ⋯ |
L(s) = 1 | + (−0.5 − 0.5i)2-s + (−0.851 + 0.851i)3-s + 0.5i·4-s + (−0.599 + 0.800i)5-s + 0.851·6-s + (−0.720 − 0.720i)7-s + (0.250 − 0.250i)8-s − 0.451i·9-s + (0.700 − 0.100i)10-s + 1.05·11-s + (−0.425 − 0.425i)12-s + (−1.23 + 1.23i)13-s + 0.720i·14-s + (−0.170 − 1.19i)15-s − 0.250·16-s + (0.527 + 0.527i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (-0.640 - 0.767i)\, \overline{\Lambda}(7-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+3) \, L(s)\cr =\mathstrut & (-0.640 - 0.767i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{7}{2})\) |
\(\approx\) |
\(0.173702 + 0.371216i\) |
\(L(\frac12)\) |
\(\approx\) |
\(0.173702 + 0.371216i\) |
\(L(4)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (4 + 4i)T \) |
| 5 | \( 1 + (75 - 100i)T \) |
good | 3 | \( 1 + (23 - 23i)T - 729iT^{2} \) |
| 7 | \( 1 + (247 + 247i)T + 1.17e5iT^{2} \) |
| 11 | \( 1 - 1.40e3T + 1.77e6T^{2} \) |
| 13 | \( 1 + (2.70e3 - 2.70e3i)T - 4.82e6iT^{2} \) |
| 17 | \( 1 + (-2.59e3 - 2.59e3i)T + 2.41e7iT^{2} \) |
| 19 | \( 1 - 1.72e3iT - 4.70e7T^{2} \) |
| 23 | \( 1 + (-2.13e3 + 2.13e3i)T - 1.48e8iT^{2} \) |
| 29 | \( 1 - 3.05e4iT - 5.94e8T^{2} \) |
| 31 | \( 1 + 3.78e4T + 8.87e8T^{2} \) |
| 37 | \( 1 + (-3.71e4 - 3.71e4i)T + 2.56e9iT^{2} \) |
| 41 | \( 1 + 3.54e4T + 4.75e9T^{2} \) |
| 43 | \( 1 + (-3.91e4 + 3.91e4i)T - 6.32e9iT^{2} \) |
| 47 | \( 1 + (-9.51e4 - 9.51e4i)T + 1.07e10iT^{2} \) |
| 53 | \( 1 + (-3.60e4 + 3.60e4i)T - 2.21e10iT^{2} \) |
| 59 | \( 1 + 3.59e4iT - 4.21e10T^{2} \) |
| 61 | \( 1 - 8.33e4T + 5.15e10T^{2} \) |
| 67 | \( 1 + (-6.08e4 - 6.08e4i)T + 9.04e10iT^{2} \) |
| 71 | \( 1 + 4.03e4T + 1.28e11T^{2} \) |
| 73 | \( 1 + (1.29e5 - 1.29e5i)T - 1.51e11iT^{2} \) |
| 79 | \( 1 - 5.24e5iT - 2.43e11T^{2} \) |
| 83 | \( 1 + (1.14e5 - 1.14e5i)T - 3.26e11iT^{2} \) |
| 89 | \( 1 - 1.87e5iT - 4.96e11T^{2} \) |
| 97 | \( 1 + (-5.32e5 - 5.32e5i)T + 8.32e11iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−19.89905126297752912454729502298, −18.95270406139479278822887060021, −17.05338442944964612721408766329, −16.37103147277319680501923015314, −14.51473847103721798149995301957, −12.06791482750842796238168573781, −10.84991820920565446614813894006, −9.680538275033016722032587633368, −6.96872610397053227181765433980, −3.97447928207397225156487965858,
0.45719974308732778039320908703, 5.67199416372430237408373390717, 7.41579948042753569680580278597, 9.348948698564673596768843027687, 11.80748732035280005999843675040, 12.75135291853885834326910510800, 15.14307447814799684737386093760, 16.59774190339917888794105022191, 17.57066677305625424790176005393, 18.97066514379148405079858323693