L(s) = 1 | + (2 + 2i)2-s + (1 − i)3-s + 8i·4-s + (−15 − 20i)5-s + 4·6-s + (−19 − 19i)7-s + (−16 + 16i)8-s + 79i·9-s + (10 − 70i)10-s + 202·11-s + (8 + 8i)12-s + (−99 + 99i)13-s − 76i·14-s + (−35 − 5i)15-s − 64·16-s + (−239 − 239i)17-s + ⋯ |
L(s) = 1 | + (0.5 + 0.5i)2-s + (0.111 − 0.111i)3-s + 0.5i·4-s + (−0.599 − 0.800i)5-s + 0.111·6-s + (−0.387 − 0.387i)7-s + (−0.250 + 0.250i)8-s + 0.975i·9-s + (0.100 − 0.700i)10-s + 1.66·11-s + (0.0555 + 0.0555i)12-s + (−0.585 + 0.585i)13-s − 0.387i·14-s + (−0.155 − 0.0222i)15-s − 0.250·16-s + (−0.826 − 0.826i)17-s + ⋯ |
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & (0.916 - 0.400i)\, \overline{\Lambda}(5-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+2) \, L(s)\cr =\mathstrut & (0.916 - 0.400i)\, \overline{\Lambda}(1-s) \end{aligned}\]
Particular Values
\(L(\frac{5}{2})\) |
\(\approx\) |
\(1.19384 + 0.249270i\) |
\(L(\frac12)\) |
\(\approx\) |
\(1.19384 + 0.249270i\) |
\(L(3)\) |
|
not available |
\(L(1)\) |
|
not available |
\(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
| $p$ | $F_p(T)$ |
---|
bad | 2 | \( 1 + (-2 - 2i)T \) |
| 5 | \( 1 + (15 + 20i)T \) |
good | 3 | \( 1 + (-1 + i)T - 81iT^{2} \) |
| 7 | \( 1 + (19 + 19i)T + 2.40e3iT^{2} \) |
| 11 | \( 1 - 202T + 1.46e4T^{2} \) |
| 13 | \( 1 + (99 - 99i)T - 2.85e4iT^{2} \) |
| 17 | \( 1 + (239 + 239i)T + 8.35e4iT^{2} \) |
| 19 | \( 1 - 40iT - 1.30e5T^{2} \) |
| 23 | \( 1 + (-541 + 541i)T - 2.79e5iT^{2} \) |
| 29 | \( 1 + 200iT - 7.07e5T^{2} \) |
| 31 | \( 1 + 758T + 9.23e5T^{2} \) |
| 37 | \( 1 + (-141 - 141i)T + 1.87e6iT^{2} \) |
| 41 | \( 1 - 1.04e3T + 2.82e6T^{2} \) |
| 43 | \( 1 + (759 - 759i)T - 3.41e6iT^{2} \) |
| 47 | \( 1 + (459 + 459i)T + 4.87e6iT^{2} \) |
| 53 | \( 1 + (1.81e3 - 1.81e3i)T - 7.89e6iT^{2} \) |
| 59 | \( 1 - 4.60e3iT - 1.21e7T^{2} \) |
| 61 | \( 1 - 2.08e3T + 1.38e7T^{2} \) |
| 67 | \( 1 + (-5.08e3 - 5.08e3i)T + 2.01e7iT^{2} \) |
| 71 | \( 1 + 3.47e3T + 2.54e7T^{2} \) |
| 73 | \( 1 + (3.47e3 - 3.47e3i)T - 2.83e7iT^{2} \) |
| 79 | \( 1 + 7.68e3iT - 3.89e7T^{2} \) |
| 83 | \( 1 + (-6.08e3 + 6.08e3i)T - 4.74e7iT^{2} \) |
| 89 | \( 1 + 5.68e3iT - 6.27e7T^{2} \) |
| 97 | \( 1 + (-561 - 561i)T + 8.85e7iT^{2} \) |
show more | |
show less | |
\(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)
Imaginary part of the first few zeros on the critical line
−20.23607954311365487738523774895, −19.27162279492311257663844232801, −16.98567584052670781622901093783, −16.26268387309593465847672038068, −14.50150656506435262624987352586, −13.10819895540757872456905795597, −11.61489344213984914249970358162, −8.963181990116567087645578232943, −7.07316282889632245175698041630, −4.48822831160574025841244091289,
3.59263323010505890195366133299, 6.58661284276896890433337774218, 9.349130222125409586860684392726, 11.25713092051544583063154212326, 12.51656295742487448191409429372, 14.54725242579615035720868542985, 15.35825312872810959797410897070, 17.55502990608387111124039039755, 19.20368663275779165457972978862, 20.01403317711729005848201304095