Properties

Label 2-10-1.1-c33-0-10
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $68.9828$
Root an. cond. $8.30559$
Motivic weight $33$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 6.55e4·2-s − 3.44e6·3-s + 4.29e9·4-s + 1.52e11·5-s − 2.25e11·6-s + 9.65e13·7-s + 2.81e14·8-s − 5.54e15·9-s + 1.00e16·10-s − 1.25e17·11-s − 1.47e16·12-s − 3.83e18·13-s + 6.33e18·14-s − 5.25e17·15-s + 1.84e19·16-s − 1.12e19·17-s − 3.63e20·18-s − 1.21e21·19-s + 6.55e20·20-s − 3.32e20·21-s − 8.23e21·22-s + 3.30e22·23-s − 9.68e20·24-s + 2.32e22·25-s − 2.51e23·26-s + 3.82e22·27-s + 4.14e23·28-s + ⋯
L(s)  = 1  + 0.707·2-s − 0.0461·3-s + 0.5·4-s + 0.447·5-s − 0.0326·6-s + 1.09·7-s + 0.353·8-s − 0.997·9-s + 0.316·10-s − 0.824·11-s − 0.0230·12-s − 1.59·13-s + 0.776·14-s − 0.0206·15-s + 0.250·16-s − 0.0561·17-s − 0.705·18-s − 0.967·19-s + 0.223·20-s − 0.0506·21-s − 0.582·22-s + 1.12·23-s − 0.0163·24-s + 0.200·25-s − 1.13·26-s + 0.0921·27-s + 0.549·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(34-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+33/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(68.9828\)
Root analytic conductor: \(8.30559\)
Motivic weight: \(33\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :33/2),\ -1)\)

Particular Values

\(L(17)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{35}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 6.55e4T \)
5 \( 1 - 1.52e11T \)
good3 \( 1 + 3.44e6T + 5.55e15T^{2} \)
7 \( 1 - 9.65e13T + 7.73e27T^{2} \)
11 \( 1 + 1.25e17T + 2.32e34T^{2} \)
13 \( 1 + 3.83e18T + 5.75e36T^{2} \)
17 \( 1 + 1.12e19T + 4.02e40T^{2} \)
19 \( 1 + 1.21e21T + 1.58e42T^{2} \)
23 \( 1 - 3.30e22T + 8.65e44T^{2} \)
29 \( 1 - 5.37e23T + 1.81e48T^{2} \)
31 \( 1 + 4.22e24T + 1.64e49T^{2} \)
37 \( 1 + 1.37e26T + 5.63e51T^{2} \)
41 \( 1 - 4.39e26T + 1.66e53T^{2} \)
43 \( 1 + 1.20e27T + 8.02e53T^{2} \)
47 \( 1 + 3.56e27T + 1.51e55T^{2} \)
53 \( 1 - 3.20e28T + 7.96e56T^{2} \)
59 \( 1 - 2.08e29T + 2.74e58T^{2} \)
61 \( 1 + 1.84e29T + 8.23e58T^{2} \)
67 \( 1 + 3.61e29T + 1.82e60T^{2} \)
71 \( 1 + 5.64e30T + 1.23e61T^{2} \)
73 \( 1 + 6.52e29T + 3.08e61T^{2} \)
79 \( 1 + 2.61e31T + 4.18e62T^{2} \)
83 \( 1 + 7.88e31T + 2.13e63T^{2} \)
89 \( 1 - 6.51e31T + 2.13e64T^{2} \)
97 \( 1 + 7.62e32T + 3.65e65T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.89383625080987991795024700497, −11.58192177592124405692874893732, −10.42347198496466689586768067043, −8.573097156331468292096075667245, −7.17559848908568966657586865605, −5.48695693138631109521790328039, −4.76759483324653587227046770781, −2.85631086388946562924965818818, −1.88134754992078329305752093878, 0, 1.88134754992078329305752093878, 2.85631086388946562924965818818, 4.76759483324653587227046770781, 5.48695693138631109521790328039, 7.17559848908568966657586865605, 8.573097156331468292096075667245, 10.42347198496466689586768067043, 11.58192177592124405692874893732, 12.89383625080987991795024700497

Graph of the $Z$-function along the critical line