Properties

Label 2-10-1.1-c31-0-6
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $60.8771$
Root an. cond. $7.80237$
Motivic weight $31$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.27e4·2-s + 2.09e7·3-s + 1.07e9·4-s + 3.05e10·5-s − 6.85e11·6-s + 1.72e13·7-s − 3.51e13·8-s − 1.80e14·9-s − 1.00e15·10-s − 1.40e16·11-s + 2.24e16·12-s + 1.12e17·13-s − 5.66e17·14-s + 6.38e17·15-s + 1.15e18·16-s − 1.87e19·17-s + 5.91e18·18-s − 1.17e20·19-s + 3.27e19·20-s + 3.61e20·21-s + 4.60e20·22-s − 2.47e21·23-s − 7.35e20·24-s + 9.31e20·25-s − 3.67e21·26-s − 1.66e22·27-s + 1.85e22·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.841·3-s + 0.5·4-s + 0.447·5-s − 0.594·6-s + 1.37·7-s − 0.353·8-s − 0.292·9-s − 0.316·10-s − 1.01·11-s + 0.420·12-s + 0.607·13-s − 0.973·14-s + 0.376·15-s + 0.250·16-s − 1.59·17-s + 0.206·18-s − 1.77·19-s + 0.223·20-s + 1.15·21-s + 0.716·22-s − 1.93·23-s − 0.297·24-s + 0.200·25-s − 0.429·26-s − 1.08·27-s + 0.688·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(32-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+31/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(60.8771\)
Root analytic conductor: \(7.80237\)
Motivic weight: \(31\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :31/2),\ -1)\)

Particular Values

\(L(16)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{33}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 3.27e4T \)
5 \( 1 - 3.05e10T \)
good3 \( 1 - 2.09e7T + 6.17e14T^{2} \)
7 \( 1 - 1.72e13T + 1.57e26T^{2} \)
11 \( 1 + 1.40e16T + 1.91e32T^{2} \)
13 \( 1 - 1.12e17T + 3.40e34T^{2} \)
17 \( 1 + 1.87e19T + 1.39e38T^{2} \)
19 \( 1 + 1.17e20T + 4.37e39T^{2} \)
23 \( 1 + 2.47e21T + 1.63e42T^{2} \)
29 \( 1 - 6.20e22T + 2.15e45T^{2} \)
31 \( 1 - 1.42e23T + 1.70e46T^{2} \)
37 \( 1 - 1.53e24T + 4.11e48T^{2} \)
41 \( 1 + 6.64e24T + 9.91e49T^{2} \)
43 \( 1 - 1.23e24T + 4.34e50T^{2} \)
47 \( 1 + 1.65e26T + 6.83e51T^{2} \)
53 \( 1 - 2.10e25T + 2.83e53T^{2} \)
59 \( 1 - 2.11e27T + 7.87e54T^{2} \)
61 \( 1 + 2.54e27T + 2.21e55T^{2} \)
67 \( 1 - 2.58e28T + 4.05e56T^{2} \)
71 \( 1 + 6.76e28T + 2.44e57T^{2} \)
73 \( 1 + 5.88e28T + 5.79e57T^{2} \)
79 \( 1 + 2.13e29T + 6.70e58T^{2} \)
83 \( 1 + 1.06e29T + 3.10e59T^{2} \)
89 \( 1 + 5.07e29T + 2.69e60T^{2} \)
97 \( 1 - 2.99e30T + 3.88e61T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.36071533348091776094050780466, −11.40245634256205334941756820671, −10.26924689275884396820989377421, −8.481301101531445725476991858886, −8.213945457805781123827835595005, −6.25248415101165197798687948959, −4.49057038408816486893496607961, −2.50451788042048994607758862042, −1.81074769645060792390397805515, 0, 1.81074769645060792390397805515, 2.50451788042048994607758862042, 4.49057038408816486893496607961, 6.25248415101165197798687948959, 8.213945457805781123827835595005, 8.481301101531445725476991858886, 10.26924689275884396820989377421, 11.40245634256205334941756820671, 13.36071533348091776094050780466

Graph of the $Z$-function along the critical line