Properties

Label 2-10-1.1-c31-0-4
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $60.8771$
Root an. cond. $7.80237$
Motivic weight $31$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.27e4·2-s − 2.68e7·3-s + 1.07e9·4-s + 3.05e10·5-s + 8.78e11·6-s + 7.28e11·7-s − 3.51e13·8-s + 1.01e14·9-s − 1.00e15·10-s − 3.37e15·11-s − 2.87e16·12-s − 1.37e17·13-s − 2.38e16·14-s − 8.18e17·15-s + 1.15e18·16-s + 2.39e18·17-s − 3.31e18·18-s + 9.48e18·19-s + 3.27e19·20-s − 1.95e19·21-s + 1.10e20·22-s + 1.89e21·23-s + 9.43e20·24-s + 9.31e20·25-s + 4.50e21·26-s + 1.38e22·27-s + 7.82e20·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.07·3-s + 0.5·4-s + 0.447·5-s + 0.762·6-s + 0.0580·7-s − 0.353·8-s + 0.164·9-s − 0.316·10-s − 0.243·11-s − 0.539·12-s − 0.745·13-s − 0.0410·14-s − 0.482·15-s + 0.250·16-s + 0.203·17-s − 0.115·18-s + 0.143·19-s + 0.223·20-s − 0.0625·21-s + 0.172·22-s + 1.48·23-s + 0.381·24-s + 0.200·25-s + 0.527·26-s + 0.901·27-s + 0.0290·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(32-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+31/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(60.8771\)
Root analytic conductor: \(7.80237\)
Motivic weight: \(31\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :31/2),\ -1)\)

Particular Values

\(L(16)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{33}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 3.27e4T \)
5 \( 1 - 3.05e10T \)
good3 \( 1 + 2.68e7T + 6.17e14T^{2} \)
7 \( 1 - 7.28e11T + 1.57e26T^{2} \)
11 \( 1 + 3.37e15T + 1.91e32T^{2} \)
13 \( 1 + 1.37e17T + 3.40e34T^{2} \)
17 \( 1 - 2.39e18T + 1.39e38T^{2} \)
19 \( 1 - 9.48e18T + 4.37e39T^{2} \)
23 \( 1 - 1.89e21T + 1.63e42T^{2} \)
29 \( 1 - 5.03e21T + 2.15e45T^{2} \)
31 \( 1 + 8.54e22T + 1.70e46T^{2} \)
37 \( 1 - 1.26e24T + 4.11e48T^{2} \)
41 \( 1 - 8.53e24T + 9.91e49T^{2} \)
43 \( 1 - 2.40e25T + 4.34e50T^{2} \)
47 \( 1 + 3.96e25T + 6.83e51T^{2} \)
53 \( 1 - 7.23e25T + 2.83e53T^{2} \)
59 \( 1 + 1.71e27T + 7.87e54T^{2} \)
61 \( 1 - 2.02e27T + 2.21e55T^{2} \)
67 \( 1 + 2.22e28T + 4.05e56T^{2} \)
71 \( 1 + 8.76e28T + 2.44e57T^{2} \)
73 \( 1 + 6.23e28T + 5.79e57T^{2} \)
79 \( 1 - 1.07e29T + 6.70e58T^{2} \)
83 \( 1 + 5.93e28T + 3.10e59T^{2} \)
89 \( 1 - 1.10e30T + 2.69e60T^{2} \)
97 \( 1 - 5.31e30T + 3.88e61T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−12.77433843909785573955697051680, −11.47537877094027112145931539672, −10.45006599346610319078834593893, −9.131936585573792538904487484507, −7.41210979656458481029895846295, −6.08891750021286976143166536811, −4.95846014527165799493772555322, −2.73285973627266801187767919575, −1.15784275083442248784408547920, 0, 1.15784275083442248784408547920, 2.73285973627266801187767919575, 4.95846014527165799493772555322, 6.08891750021286976143166536811, 7.41210979656458481029895846295, 9.131936585573792538904487484507, 10.45006599346610319078834593893, 11.47537877094027112145931539672, 12.77433843909785573955697051680

Graph of the $Z$-function along the critical line