Properties

Label 2-10-1.1-c31-0-2
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $60.8771$
Root an. cond. $7.80237$
Motivic weight $31$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 3.27e4·2-s + 1.07e7·3-s + 1.07e9·4-s − 3.05e10·5-s − 3.52e11·6-s + 2.26e13·7-s − 3.51e13·8-s − 5.02e14·9-s + 1.00e15·10-s + 2.45e16·11-s + 1.15e16·12-s − 1.48e17·13-s − 7.40e17·14-s − 3.28e17·15-s + 1.15e18·16-s + 1.16e19·17-s + 1.64e19·18-s + 3.78e19·19-s − 3.27e19·20-s + 2.42e20·21-s − 8.04e20·22-s + 8.75e20·23-s − 3.78e20·24-s + 9.31e20·25-s + 4.86e21·26-s − 1.20e22·27-s + 2.42e22·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.432·3-s + 0.5·4-s − 0.447·5-s − 0.305·6-s + 1.79·7-s − 0.353·8-s − 0.812·9-s + 0.316·10-s + 1.77·11-s + 0.216·12-s − 0.804·13-s − 1.27·14-s − 0.193·15-s + 0.250·16-s + 0.984·17-s + 0.574·18-s + 0.571·19-s − 0.223·20-s + 0.778·21-s − 1.25·22-s + 0.684·23-s − 0.152·24-s + 0.200·25-s + 0.568·26-s − 0.784·27-s + 0.899·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(32-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+31/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(60.8771\)
Root analytic conductor: \(7.80237\)
Motivic weight: \(31\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :31/2),\ 1)\)

Particular Values

\(L(16)\) \(\approx\) \(2.157750260\)
\(L(\frac12)\) \(\approx\) \(2.157750260\)
\(L(\frac{33}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 3.27e4T \)
5 \( 1 + 3.05e10T \)
good3 \( 1 - 1.07e7T + 6.17e14T^{2} \)
7 \( 1 - 2.26e13T + 1.57e26T^{2} \)
11 \( 1 - 2.45e16T + 1.91e32T^{2} \)
13 \( 1 + 1.48e17T + 3.40e34T^{2} \)
17 \( 1 - 1.16e19T + 1.39e38T^{2} \)
19 \( 1 - 3.78e19T + 4.37e39T^{2} \)
23 \( 1 - 8.75e20T + 1.63e42T^{2} \)
29 \( 1 + 8.57e22T + 2.15e45T^{2} \)
31 \( 1 - 2.14e22T + 1.70e46T^{2} \)
37 \( 1 + 2.44e24T + 4.11e48T^{2} \)
41 \( 1 - 1.07e25T + 9.91e49T^{2} \)
43 \( 1 - 6.78e24T + 4.34e50T^{2} \)
47 \( 1 + 1.41e26T + 6.83e51T^{2} \)
53 \( 1 - 5.25e26T + 2.83e53T^{2} \)
59 \( 1 - 2.03e27T + 7.87e54T^{2} \)
61 \( 1 - 6.56e27T + 2.21e55T^{2} \)
67 \( 1 - 2.16e28T + 4.05e56T^{2} \)
71 \( 1 - 2.83e28T + 2.44e57T^{2} \)
73 \( 1 - 2.94e28T + 5.79e57T^{2} \)
79 \( 1 + 2.36e29T + 6.70e58T^{2} \)
83 \( 1 - 7.97e29T + 3.10e59T^{2} \)
89 \( 1 - 1.17e30T + 2.69e60T^{2} \)
97 \( 1 + 3.02e30T + 3.88e61T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.43001746334773705877343598807, −11.87716856148701995697642440913, −11.24952737001225955935701874864, −9.344886200642484944198761888823, −8.285495702833957877442910728068, −7.27982344695646936241333726631, −5.30216774150479921347713117739, −3.65887322428048848758089559006, −1.98951857919564664797491242082, −0.912107971976522102988485187780, 0.912107971976522102988485187780, 1.98951857919564664797491242082, 3.65887322428048848758089559006, 5.30216774150479921347713117739, 7.27982344695646936241333726631, 8.285495702833957877442910728068, 9.344886200642484944198761888823, 11.24952737001225955935701874864, 11.87716856148701995697642440913, 14.43001746334773705877343598807

Graph of the $Z$-function along the critical line