Properties

Label 2-10-1.1-c29-0-10
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $53.2780$
Root an. cond. $7.29918$
Motivic weight $29$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.63e4·2-s + 7.68e6·3-s + 2.68e8·4-s + 6.10e9·5-s + 1.25e11·6-s − 1.48e12·7-s + 4.39e12·8-s − 9.59e12·9-s + 1.00e14·10-s − 1.49e15·11-s + 2.06e15·12-s − 1.87e16·13-s − 2.42e16·14-s + 4.68e16·15-s + 7.20e16·16-s − 5.52e17·17-s − 1.57e17·18-s − 3.63e18·19-s + 1.63e18·20-s − 1.13e19·21-s − 2.44e19·22-s + 1.19e19·23-s + 3.37e19·24-s + 3.72e19·25-s − 3.07e20·26-s − 6.01e20·27-s − 3.97e20·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.927·3-s + 0.5·4-s + 0.447·5-s + 0.655·6-s − 0.825·7-s + 0.353·8-s − 0.139·9-s + 0.316·10-s − 1.18·11-s + 0.463·12-s − 1.32·13-s − 0.583·14-s + 0.414·15-s + 0.250·16-s − 0.795·17-s − 0.0988·18-s − 1.04·19-s + 0.223·20-s − 0.765·21-s − 0.837·22-s + 0.214·23-s + 0.327·24-s + 0.200·25-s − 0.934·26-s − 1.05·27-s − 0.412·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(30-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+29/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(53.2780\)
Root analytic conductor: \(7.29918\)
Motivic weight: \(29\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :29/2),\ -1)\)

Particular Values

\(L(15)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{31}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.63e4T \)
5 \( 1 - 6.10e9T \)
good3 \( 1 - 7.68e6T + 6.86e13T^{2} \)
7 \( 1 + 1.48e12T + 3.21e24T^{2} \)
11 \( 1 + 1.49e15T + 1.58e30T^{2} \)
13 \( 1 + 1.87e16T + 2.01e32T^{2} \)
17 \( 1 + 5.52e17T + 4.81e35T^{2} \)
19 \( 1 + 3.63e18T + 1.21e37T^{2} \)
23 \( 1 - 1.19e19T + 3.09e39T^{2} \)
29 \( 1 - 1.49e21T + 2.56e42T^{2} \)
31 \( 1 - 2.12e20T + 1.77e43T^{2} \)
37 \( 1 - 4.36e22T + 3.00e45T^{2} \)
41 \( 1 - 1.24e23T + 5.89e46T^{2} \)
43 \( 1 - 4.89e23T + 2.34e47T^{2} \)
47 \( 1 - 3.20e24T + 3.09e48T^{2} \)
53 \( 1 + 1.61e25T + 1.00e50T^{2} \)
59 \( 1 + 6.74e25T + 2.26e51T^{2} \)
61 \( 1 + 4.59e25T + 5.95e51T^{2} \)
67 \( 1 + 3.04e26T + 9.04e52T^{2} \)
71 \( 1 - 8.77e25T + 4.85e53T^{2} \)
73 \( 1 + 1.54e27T + 1.08e54T^{2} \)
79 \( 1 - 8.64e25T + 1.07e55T^{2} \)
83 \( 1 - 8.92e27T + 4.50e55T^{2} \)
89 \( 1 - 4.85e27T + 3.40e56T^{2} \)
97 \( 1 - 6.50e28T + 4.13e57T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.47122809353914777495695037298, −12.54520928142389245067565693040, −10.57132827178239129074568349289, −9.204904545039867475866760619801, −7.64516201288252854182410150876, −6.12825567625343865066301396521, −4.59964177228313023993288801237, −2.88650740955351549416613284078, −2.32884995884816183750435443939, 0, 2.32884995884816183750435443939, 2.88650740955351549416613284078, 4.59964177228313023993288801237, 6.12825567625343865066301396521, 7.64516201288252854182410150876, 9.204904545039867475866760619801, 10.57132827178239129074568349289, 12.54520928142389245067565693040, 13.47122809353914777495695037298

Graph of the $Z$-function along the critical line