Properties

Label 2-10-1.1-c27-0-6
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $46.1855$
Root an. cond. $6.79599$
Motivic weight $27$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.19e3·2-s + 1.86e5·3-s + 6.71e7·4-s + 1.22e9·5-s − 1.53e9·6-s + 1.52e11·7-s − 5.49e11·8-s − 7.59e12·9-s − 1.00e13·10-s + 5.20e13·11-s + 1.25e13·12-s − 9.66e14·13-s − 1.24e15·14-s + 2.28e14·15-s + 4.50e15·16-s − 8.84e15·17-s + 6.21e16·18-s − 4.96e16·19-s + 8.19e16·20-s + 2.84e16·21-s − 4.26e17·22-s + 2.39e18·23-s − 1.02e17·24-s + 1.49e18·25-s + 7.91e18·26-s − 2.84e18·27-s + 1.02e19·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.0676·3-s + 0.5·4-s + 0.447·5-s − 0.0478·6-s + 0.593·7-s − 0.353·8-s − 0.995·9-s − 0.316·10-s + 0.454·11-s + 0.0338·12-s − 0.885·13-s − 0.419·14-s + 0.0302·15-s + 0.250·16-s − 0.216·17-s + 0.703·18-s − 0.270·19-s + 0.223·20-s + 0.0401·21-s − 0.321·22-s + 0.990·23-s − 0.0239·24-s + 0.199·25-s + 0.625·26-s − 0.134·27-s + 0.296·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(46.1855\)
Root analytic conductor: \(6.79599\)
Motivic weight: \(27\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :27/2),\ -1)\)

Particular Values

\(L(14)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8.19e3T \)
5 \( 1 - 1.22e9T \)
good3 \( 1 - 1.86e5T + 7.62e12T^{2} \)
7 \( 1 - 1.52e11T + 6.57e22T^{2} \)
11 \( 1 - 5.20e13T + 1.31e28T^{2} \)
13 \( 1 + 9.66e14T + 1.19e30T^{2} \)
17 \( 1 + 8.84e15T + 1.66e33T^{2} \)
19 \( 1 + 4.96e16T + 3.36e34T^{2} \)
23 \( 1 - 2.39e18T + 5.84e36T^{2} \)
29 \( 1 - 5.37e18T + 3.05e39T^{2} \)
31 \( 1 - 1.60e20T + 1.84e40T^{2} \)
37 \( 1 + 2.24e21T + 2.19e42T^{2} \)
41 \( 1 + 4.36e21T + 3.50e43T^{2} \)
43 \( 1 + 5.19e21T + 1.26e44T^{2} \)
47 \( 1 - 1.42e21T + 1.40e45T^{2} \)
53 \( 1 + 2.24e23T + 3.59e46T^{2} \)
59 \( 1 + 1.17e24T + 6.50e47T^{2} \)
61 \( 1 + 2.05e24T + 1.59e48T^{2} \)
67 \( 1 - 3.81e24T + 2.01e49T^{2} \)
71 \( 1 + 3.12e24T + 9.63e49T^{2} \)
73 \( 1 - 1.49e25T + 2.04e50T^{2} \)
79 \( 1 - 1.41e25T + 1.72e51T^{2} \)
83 \( 1 + 7.95e24T + 6.53e51T^{2} \)
89 \( 1 + 1.05e26T + 4.30e52T^{2} \)
97 \( 1 + 2.67e26T + 4.39e53T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−13.97756821922551499166121253593, −12.07522271487377906900866341107, −10.82351813602922164737248597228, −9.349324796154985816624834683360, −8.190493865173437379062652528635, −6.61010164811198320189881389167, −5.03604025707529726661101869382, −2.88574255606246008863666505496, −1.56573529971417964589857727623, 0, 1.56573529971417964589857727623, 2.88574255606246008863666505496, 5.03604025707529726661101869382, 6.61010164811198320189881389167, 8.190493865173437379062652528635, 9.349324796154985816624834683360, 10.82351813602922164737248597228, 12.07522271487377906900866341107, 13.97756821922551499166121253593

Graph of the $Z$-function along the critical line