Properties

Label 2-10-1.1-c27-0-0
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $46.1855$
Root an. cond. $6.79599$
Motivic weight $27$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 8.19e3·2-s − 3.70e6·3-s + 6.71e7·4-s − 1.22e9·5-s + 3.03e10·6-s + 2.21e11·7-s − 5.49e11·8-s + 6.07e12·9-s + 1.00e13·10-s − 4.96e12·11-s − 2.48e14·12-s − 2.20e14·13-s − 1.81e15·14-s + 4.51e15·15-s + 4.50e15·16-s − 2.82e16·17-s − 4.97e16·18-s − 3.08e17·19-s − 8.19e16·20-s − 8.21e17·21-s + 4.06e16·22-s − 1.01e18·23-s + 2.03e18·24-s + 1.49e18·25-s + 1.81e18·26-s + 5.73e18·27-s + 1.48e19·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.34·3-s + 0.5·4-s − 0.447·5-s + 0.947·6-s + 0.865·7-s − 0.353·8-s + 0.796·9-s + 0.316·10-s − 0.0433·11-s − 0.670·12-s − 0.202·13-s − 0.612·14-s + 0.599·15-s + 0.250·16-s − 0.692·17-s − 0.563·18-s − 1.68·19-s − 0.223·20-s − 1.16·21-s + 0.0306·22-s − 0.420·23-s + 0.473·24-s + 0.199·25-s + 0.143·26-s + 0.272·27-s + 0.432·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(28-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+27/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(46.1855\)
Root analytic conductor: \(6.79599\)
Motivic weight: \(27\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :27/2),\ 1)\)

Particular Values

\(L(14)\) \(\approx\) \(0.4537352077\)
\(L(\frac12)\) \(\approx\) \(0.4537352077\)
\(L(\frac{29}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 8.19e3T \)
5 \( 1 + 1.22e9T \)
good3 \( 1 + 3.70e6T + 7.62e12T^{2} \)
7 \( 1 - 2.21e11T + 6.57e22T^{2} \)
11 \( 1 + 4.96e12T + 1.31e28T^{2} \)
13 \( 1 + 2.20e14T + 1.19e30T^{2} \)
17 \( 1 + 2.82e16T + 1.66e33T^{2} \)
19 \( 1 + 3.08e17T + 3.36e34T^{2} \)
23 \( 1 + 1.01e18T + 5.84e36T^{2} \)
29 \( 1 + 1.98e19T + 3.05e39T^{2} \)
31 \( 1 + 2.14e20T + 1.84e40T^{2} \)
37 \( 1 + 1.51e21T + 2.19e42T^{2} \)
41 \( 1 - 6.15e21T + 3.50e43T^{2} \)
43 \( 1 - 1.65e22T + 1.26e44T^{2} \)
47 \( 1 + 4.19e21T + 1.40e45T^{2} \)
53 \( 1 - 2.49e23T + 3.59e46T^{2} \)
59 \( 1 - 9.83e23T + 6.50e47T^{2} \)
61 \( 1 + 3.10e23T + 1.59e48T^{2} \)
67 \( 1 + 5.68e24T + 2.01e49T^{2} \)
71 \( 1 + 1.00e25T + 9.63e49T^{2} \)
73 \( 1 - 8.83e24T + 2.04e50T^{2} \)
79 \( 1 + 5.62e25T + 1.72e51T^{2} \)
83 \( 1 - 1.02e26T + 6.53e51T^{2} \)
89 \( 1 + 1.49e26T + 4.30e52T^{2} \)
97 \( 1 + 5.13e26T + 4.39e53T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.81769808379749654003886499049, −12.53522425623574718283737721364, −11.32151222188806323740947560010, −10.62803714391003157110538564708, −8.676409457306965029706148662096, −7.19106737276169071822550298660, −5.79433923766414706649305681775, −4.36014088307428706865221189980, −1.96434064848990649254962466703, −0.44741907088208802246144618443, 0.44741907088208802246144618443, 1.96434064848990649254962466703, 4.36014088307428706865221189980, 5.79433923766414706649305681775, 7.19106737276169071822550298660, 8.676409457306965029706148662096, 10.62803714391003157110538564708, 11.32151222188806323740947560010, 12.53522425623574718283737721364, 14.81769808379749654003886499049

Graph of the $Z$-function along the critical line