Properties

Label 2-10-1.1-c25-0-5
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $39.5996$
Root an. cond. $6.29282$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.09e3·2-s + 1.24e6·3-s + 1.67e7·4-s − 2.44e8·5-s − 5.10e9·6-s + 3.92e10·7-s − 6.87e10·8-s + 7.08e11·9-s + 1.00e12·10-s − 1.50e13·11-s + 2.09e13·12-s − 1.45e14·13-s − 1.60e14·14-s − 3.04e14·15-s + 2.81e14·16-s + 1.30e15·17-s − 2.90e15·18-s − 9.75e15·19-s − 4.09e15·20-s + 4.89e16·21-s + 6.17e16·22-s + 1.00e17·23-s − 8.57e16·24-s + 5.96e16·25-s + 5.95e17·26-s − 1.73e17·27-s + 6.58e17·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 1.35·3-s + 0.5·4-s − 0.447·5-s − 0.958·6-s + 1.07·7-s − 0.353·8-s + 0.835·9-s + 0.316·10-s − 1.44·11-s + 0.677·12-s − 1.73·13-s − 0.758·14-s − 0.605·15-s + 0.250·16-s + 0.542·17-s − 0.590·18-s − 1.01·19-s − 0.223·20-s + 1.45·21-s + 1.02·22-s + 0.958·23-s − 0.479·24-s + 0.199·25-s + 1.22·26-s − 0.222·27-s + 0.536·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(39.5996\)
Root analytic conductor: \(6.29282\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :25/2),\ -1)\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4.09e3T \)
5 \( 1 + 2.44e8T \)
good3 \( 1 - 1.24e6T + 8.47e11T^{2} \)
7 \( 1 - 3.92e10T + 1.34e21T^{2} \)
11 \( 1 + 1.50e13T + 1.08e26T^{2} \)
13 \( 1 + 1.45e14T + 7.05e27T^{2} \)
17 \( 1 - 1.30e15T + 5.77e30T^{2} \)
19 \( 1 + 9.75e15T + 9.30e31T^{2} \)
23 \( 1 - 1.00e17T + 1.10e34T^{2} \)
29 \( 1 + 1.41e18T + 3.63e36T^{2} \)
31 \( 1 + 3.30e18T + 1.92e37T^{2} \)
37 \( 1 - 6.55e19T + 1.60e39T^{2} \)
41 \( 1 + 9.42e19T + 2.08e40T^{2} \)
43 \( 1 - 1.20e20T + 6.86e40T^{2} \)
47 \( 1 + 8.86e20T + 6.34e41T^{2} \)
53 \( 1 + 6.79e21T + 1.27e43T^{2} \)
59 \( 1 + 1.11e22T + 1.86e44T^{2} \)
61 \( 1 + 3.14e22T + 4.29e44T^{2} \)
67 \( 1 - 4.52e22T + 4.48e45T^{2} \)
71 \( 1 + 3.31e22T + 1.91e46T^{2} \)
73 \( 1 - 3.04e23T + 3.82e46T^{2} \)
79 \( 1 + 1.45e23T + 2.75e47T^{2} \)
83 \( 1 - 8.80e23T + 9.48e47T^{2} \)
89 \( 1 + 1.79e23T + 5.42e48T^{2} \)
97 \( 1 + 7.02e24T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.57160202439533757262151841499, −12.76376272715006114510808486289, −10.98159554784362422401248329837, −9.492537646922989460941385155021, −8.062759499573733997825898143470, −7.58484558598131789183616466707, −4.86923100680976881261401695389, −2.92572635266540744950986274490, −1.94108107346812939052426865663, 0, 1.94108107346812939052426865663, 2.92572635266540744950986274490, 4.86923100680976881261401695389, 7.58484558598131789183616466707, 8.062759499573733997825898143470, 9.492537646922989460941385155021, 10.98159554784362422401248329837, 12.76376272715006114510808486289, 14.57160202439533757262151841499

Graph of the $Z$-function along the critical line