Properties

Label 2-10-1.1-c25-0-4
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $39.5996$
Root an. cond. $6.29282$
Motivic weight $25$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 4.09e3·2-s − 7.01e5·3-s + 1.67e7·4-s − 2.44e8·5-s + 2.87e9·6-s − 7.10e8·7-s − 6.87e10·8-s − 3.54e11·9-s + 1.00e12·10-s + 6.69e12·11-s − 1.17e13·12-s − 4.06e12·13-s + 2.90e12·14-s + 1.71e14·15-s + 2.81e14·16-s + 2.05e15·17-s + 1.45e15·18-s + 1.32e16·19-s − 4.09e15·20-s + 4.98e14·21-s − 2.74e16·22-s − 2.83e16·23-s + 4.82e16·24-s + 5.96e16·25-s + 1.66e16·26-s + 8.43e17·27-s − 1.19e16·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 0.762·3-s + 0.5·4-s − 0.447·5-s + 0.539·6-s − 0.0193·7-s − 0.353·8-s − 0.418·9-s + 0.316·10-s + 0.642·11-s − 0.381·12-s − 0.0483·13-s + 0.0137·14-s + 0.341·15-s + 0.250·16-s + 0.855·17-s + 0.295·18-s + 1.37·19-s − 0.223·20-s + 0.0147·21-s − 0.454·22-s − 0.269·23-s + 0.269·24-s + 0.199·25-s + 0.0342·26-s + 1.08·27-s − 0.00969·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(26-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+25/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(39.5996\)
Root analytic conductor: \(6.29282\)
Motivic weight: \(25\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :25/2),\ -1)\)

Particular Values

\(L(13)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{27}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 4.09e3T \)
5 \( 1 + 2.44e8T \)
good3 \( 1 + 7.01e5T + 8.47e11T^{2} \)
7 \( 1 + 7.10e8T + 1.34e21T^{2} \)
11 \( 1 - 6.69e12T + 1.08e26T^{2} \)
13 \( 1 + 4.06e12T + 7.05e27T^{2} \)
17 \( 1 - 2.05e15T + 5.77e30T^{2} \)
19 \( 1 - 1.32e16T + 9.30e31T^{2} \)
23 \( 1 + 2.83e16T + 1.10e34T^{2} \)
29 \( 1 - 8.79e17T + 3.63e36T^{2} \)
31 \( 1 + 3.20e17T + 1.92e37T^{2} \)
37 \( 1 + 4.64e19T + 1.60e39T^{2} \)
41 \( 1 + 1.18e20T + 2.08e40T^{2} \)
43 \( 1 + 1.34e20T + 6.86e40T^{2} \)
47 \( 1 + 7.78e20T + 6.34e41T^{2} \)
53 \( 1 + 3.18e21T + 1.27e43T^{2} \)
59 \( 1 + 2.03e21T + 1.86e44T^{2} \)
61 \( 1 - 3.16e22T + 4.29e44T^{2} \)
67 \( 1 - 4.98e22T + 4.48e45T^{2} \)
71 \( 1 - 1.16e23T + 1.91e46T^{2} \)
73 \( 1 + 1.07e23T + 3.82e46T^{2} \)
79 \( 1 - 2.51e23T + 2.75e47T^{2} \)
83 \( 1 + 1.47e24T + 9.48e47T^{2} \)
89 \( 1 + 1.69e24T + 5.42e48T^{2} \)
97 \( 1 + 4.56e24T + 4.66e49T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.30587599613203452273981982122, −12.14663262218137303556212539135, −11.32600843163379472079279165960, −9.832588671207865702563175028514, −8.257850168107581819790151845900, −6.76482799512350825123723644684, −5.30279706047964826348639516612, −3.28026065029470894403981133412, −1.25014930358597200731379863363, 0, 1.25014930358597200731379863363, 3.28026065029470894403981133412, 5.30279706047964826348639516612, 6.76482799512350825123723644684, 8.257850168107581819790151845900, 9.832588671207865702563175028514, 11.32600843163379472079279165960, 12.14663262218137303556212539135, 14.30587599613203452273981982122

Graph of the $Z$-function along the critical line