Properties

Label 2-10-1.1-c23-0-8
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $33.5204$
Root an. cond. $5.78968$
Motivic weight $23$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 2.04e3·2-s + 2.47e5·3-s + 4.19e6·4-s − 4.88e7·5-s + 5.06e8·6-s − 3.52e9·7-s + 8.58e9·8-s − 3.30e10·9-s − 1.00e11·10-s − 6.19e11·11-s + 1.03e12·12-s − 9.21e12·13-s − 7.22e12·14-s − 1.20e13·15-s + 1.75e13·16-s + 2.96e13·17-s − 6.76e13·18-s − 3.56e14·19-s − 2.04e14·20-s − 8.71e14·21-s − 1.26e15·22-s + 2.73e15·23-s + 2.12e15·24-s + 2.38e15·25-s − 1.88e16·26-s − 3.14e16·27-s − 1.47e16·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 0.805·3-s + 0.5·4-s − 0.447·5-s + 0.569·6-s − 0.674·7-s + 0.353·8-s − 0.350·9-s − 0.316·10-s − 0.654·11-s + 0.402·12-s − 1.42·13-s − 0.476·14-s − 0.360·15-s + 0.250·16-s + 0.209·17-s − 0.247·18-s − 0.701·19-s − 0.223·20-s − 0.543·21-s − 0.462·22-s + 0.597·23-s + 0.284·24-s + 0.200·25-s − 1.00·26-s − 1.08·27-s − 0.337·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(24-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+23/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(33.5204\)
Root analytic conductor: \(5.78968\)
Motivic weight: \(23\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :23/2),\ -1)\)

Particular Values

\(L(12)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{25}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 2.04e3T \)
5 \( 1 + 4.88e7T \)
good3 \( 1 - 2.47e5T + 9.41e10T^{2} \)
7 \( 1 + 3.52e9T + 2.73e19T^{2} \)
11 \( 1 + 6.19e11T + 8.95e23T^{2} \)
13 \( 1 + 9.21e12T + 4.17e25T^{2} \)
17 \( 1 - 2.96e13T + 1.99e28T^{2} \)
19 \( 1 + 3.56e14T + 2.57e29T^{2} \)
23 \( 1 - 2.73e15T + 2.08e31T^{2} \)
29 \( 1 - 5.96e16T + 4.31e33T^{2} \)
31 \( 1 - 5.61e16T + 2.00e34T^{2} \)
37 \( 1 + 1.59e18T + 1.17e36T^{2} \)
41 \( 1 + 4.81e18T + 1.24e37T^{2} \)
43 \( 1 + 7.53e18T + 3.71e37T^{2} \)
47 \( 1 - 1.70e18T + 2.87e38T^{2} \)
53 \( 1 - 7.71e19T + 4.55e39T^{2} \)
59 \( 1 - 2.22e20T + 5.36e40T^{2} \)
61 \( 1 - 2.72e20T + 1.15e41T^{2} \)
67 \( 1 - 6.39e20T + 9.99e41T^{2} \)
71 \( 1 + 2.68e21T + 3.79e42T^{2} \)
73 \( 1 - 4.36e21T + 7.18e42T^{2} \)
79 \( 1 + 3.18e21T + 4.42e43T^{2} \)
83 \( 1 + 2.75e21T + 1.37e44T^{2} \)
89 \( 1 + 1.40e22T + 6.85e44T^{2} \)
97 \( 1 - 1.12e23T + 4.96e45T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−14.52714145053782251705922784833, −13.20883757430877632738312681175, −11.95917950019260127343796694263, −10.13369762318517327652199063516, −8.392302418733245324373918091481, −6.94103249727586938170408291690, −5.06211035121655743552037750147, −3.39131263719406303899277868045, −2.39426470800482057139001456287, 0, 2.39426470800482057139001456287, 3.39131263719406303899277868045, 5.06211035121655743552037750147, 6.94103249727586938170408291690, 8.392302418733245324373918091481, 10.13369762318517327652199063516, 11.95917950019260127343796694263, 13.20883757430877632738312681175, 14.52714145053782251705922784833

Graph of the $Z$-function along the critical line