Properties

Label 2-10-1.1-c21-0-3
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $27.9477$
Root an. cond. $5.28656$
Motivic weight $21$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  + 1.02e3·2-s + 1.45e5·3-s + 1.04e6·4-s − 9.76e6·5-s + 1.49e8·6-s − 2.36e8·7-s + 1.07e9·8-s + 1.08e10·9-s − 1.00e10·10-s + 1.49e11·11-s + 1.52e11·12-s + 4.89e11·13-s − 2.41e11·14-s − 1.42e12·15-s + 1.09e12·16-s + 5.46e12·17-s + 1.10e13·18-s − 1.12e13·19-s − 1.02e13·20-s − 3.44e13·21-s + 1.52e14·22-s + 1.78e13·23-s + 1.56e14·24-s + 9.53e13·25-s + 5.01e14·26-s + 4.99e13·27-s − 2.47e14·28-s + ⋯
L(s)  = 1  + 0.707·2-s + 1.42·3-s + 0.5·4-s − 0.447·5-s + 1.00·6-s − 0.315·7-s + 0.353·8-s + 1.03·9-s − 0.316·10-s + 1.73·11-s + 0.712·12-s + 0.984·13-s − 0.223·14-s − 0.637·15-s + 0.250·16-s + 0.657·17-s + 0.730·18-s − 0.419·19-s − 0.223·20-s − 0.450·21-s + 1.22·22-s + 0.0899·23-s + 0.504·24-s + 0.199·25-s + 0.696·26-s + 0.0467·27-s − 0.157·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(22-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+21/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(27.9477\)
Root analytic conductor: \(5.28656\)
Motivic weight: \(21\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :21/2),\ 1)\)

Particular Values

\(L(11)\) \(\approx\) \(5.044118814\)
\(L(\frac12)\) \(\approx\) \(5.044118814\)
\(L(\frac{23}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 - 1.02e3T \)
5 \( 1 + 9.76e6T \)
good3 \( 1 - 1.45e5T + 1.04e10T^{2} \)
7 \( 1 + 2.36e8T + 5.58e17T^{2} \)
11 \( 1 - 1.49e11T + 7.40e21T^{2} \)
13 \( 1 - 4.89e11T + 2.47e23T^{2} \)
17 \( 1 - 5.46e12T + 6.90e25T^{2} \)
19 \( 1 + 1.12e13T + 7.14e26T^{2} \)
23 \( 1 - 1.78e13T + 3.94e28T^{2} \)
29 \( 1 + 2.82e15T + 5.13e30T^{2} \)
31 \( 1 - 4.24e15T + 2.08e31T^{2} \)
37 \( 1 - 5.74e16T + 8.55e32T^{2} \)
41 \( 1 + 3.51e16T + 7.38e33T^{2} \)
43 \( 1 + 2.62e17T + 2.00e34T^{2} \)
47 \( 1 - 1.08e17T + 1.30e35T^{2} \)
53 \( 1 + 2.47e18T + 1.62e36T^{2} \)
59 \( 1 - 2.14e17T + 1.54e37T^{2} \)
61 \( 1 - 3.64e18T + 3.10e37T^{2} \)
67 \( 1 + 1.13e19T + 2.22e38T^{2} \)
71 \( 1 - 2.44e19T + 7.52e38T^{2} \)
73 \( 1 + 4.12e19T + 1.34e39T^{2} \)
79 \( 1 - 6.83e19T + 7.08e39T^{2} \)
83 \( 1 - 1.39e20T + 1.99e40T^{2} \)
89 \( 1 + 4.04e20T + 8.65e40T^{2} \)
97 \( 1 + 9.18e20T + 5.27e41T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−15.13882234462509989118536923004, −14.30191180182851090555111216750, −13.11501084736210432123292800820, −11.53921826035046864923926285742, −9.426914530971558626016586784040, −8.100065386988730858243015776923, −6.45860842729809545368635697469, −4.05255449788773471739179722733, −3.20267462228395308125262242873, −1.48514684380487484315958066096, 1.48514684380487484315958066096, 3.20267462228395308125262242873, 4.05255449788773471739179722733, 6.45860842729809545368635697469, 8.100065386988730858243015776923, 9.426914530971558626016586784040, 11.53921826035046864923926285742, 13.11501084736210432123292800820, 14.30191180182851090555111216750, 15.13882234462509989118536923004

Graph of the $Z$-function along the critical line