Properties

Label 2-10-1.1-c17-0-3
Degree $2$
Conductor $10$
Sign $-1$
Analytic cond. $18.3222$
Root an. cond. $4.28044$
Motivic weight $17$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $1$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·2-s − 1.83e4·3-s + 6.55e4·4-s − 3.90e5·5-s + 4.69e6·6-s + 1.60e7·7-s − 1.67e7·8-s + 2.07e8·9-s + 1.00e8·10-s + 7.88e8·11-s − 1.20e9·12-s − 2.87e9·13-s − 4.11e9·14-s + 7.16e9·15-s + 4.29e9·16-s + 2.01e10·17-s − 5.31e10·18-s − 2.28e10·19-s − 2.56e10·20-s − 2.94e11·21-s − 2.01e11·22-s − 6.65e11·23-s + 3.07e11·24-s + 1.52e11·25-s + 7.35e11·26-s − 1.43e12·27-s + 1.05e12·28-s + ⋯
L(s)  = 1  − 0.707·2-s − 1.61·3-s + 0.5·4-s − 0.447·5-s + 1.14·6-s + 1.05·7-s − 0.353·8-s + 1.60·9-s + 0.316·10-s + 1.10·11-s − 0.807·12-s − 0.977·13-s − 0.745·14-s + 0.721·15-s + 0.250·16-s + 0.700·17-s − 1.13·18-s − 0.308·19-s − 0.223·20-s − 1.70·21-s − 0.783·22-s − 1.77·23-s + 0.570·24-s + 0.200·25-s + 0.690·26-s − 0.978·27-s + 0.527·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & -\, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & -\, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $-1$
Analytic conductor: \(18.3222\)
Root analytic conductor: \(4.28044\)
Motivic weight: \(17\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(1\)
Selberg data: \((2,\ 10,\ (\ :17/2),\ -1)\)

Particular Values

\(L(9)\) \(=\) \(0\)
\(L(\frac12)\) \(=\) \(0\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 256T \)
5 \( 1 + 3.90e5T \)
good3 \( 1 + 1.83e4T + 1.29e8T^{2} \)
7 \( 1 - 1.60e7T + 2.32e14T^{2} \)
11 \( 1 - 7.88e8T + 5.05e17T^{2} \)
13 \( 1 + 2.87e9T + 8.65e18T^{2} \)
17 \( 1 - 2.01e10T + 8.27e20T^{2} \)
19 \( 1 + 2.28e10T + 5.48e21T^{2} \)
23 \( 1 + 6.65e11T + 1.41e23T^{2} \)
29 \( 1 + 2.42e12T + 7.25e24T^{2} \)
31 \( 1 - 8.75e12T + 2.25e25T^{2} \)
37 \( 1 - 2.75e13T + 4.56e26T^{2} \)
41 \( 1 - 3.91e13T + 2.61e27T^{2} \)
43 \( 1 + 1.29e14T + 5.87e27T^{2} \)
47 \( 1 + 3.00e14T + 2.66e28T^{2} \)
53 \( 1 - 1.01e14T + 2.05e29T^{2} \)
59 \( 1 + 9.67e14T + 1.27e30T^{2} \)
61 \( 1 + 1.14e15T + 2.24e30T^{2} \)
67 \( 1 + 4.04e15T + 1.10e31T^{2} \)
71 \( 1 + 7.35e15T + 2.96e31T^{2} \)
73 \( 1 - 6.99e14T + 4.74e31T^{2} \)
79 \( 1 - 1.08e16T + 1.81e32T^{2} \)
83 \( 1 + 1.23e16T + 4.21e32T^{2} \)
89 \( 1 + 2.21e16T + 1.37e33T^{2} \)
97 \( 1 - 9.41e16T + 5.95e33T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.44060109450586892843172728268, −14.75560750667871913677444486947, −12.03366484773966092165775879482, −11.49386042541845569500570278901, −10.00949088855829780957427183570, −7.83443484987907512307869010544, −6.24293214062582122949390919918, −4.58681730151072479810673840130, −1.41911298626837526464284591090, 0, 1.41911298626837526464284591090, 4.58681730151072479810673840130, 6.24293214062582122949390919918, 7.83443484987907512307869010544, 10.00949088855829780957427183570, 11.49386042541845569500570278901, 12.03366484773966092165775879482, 14.75560750667871913677444486947, 16.44060109450586892843172728268

Graph of the $Z$-function along the critical line