Properties

Label 2-10-1.1-c17-0-2
Degree $2$
Conductor $10$
Sign $1$
Analytic cond. $18.3222$
Root an. cond. $4.28044$
Motivic weight $17$
Arithmetic yes
Rational no
Primitive yes
Self-dual yes
Analytic rank $0$

Origins

Related objects

Downloads

Learn more

Normalization:  

Dirichlet series

L(s)  = 1  − 256·2-s + 8.00e3·3-s + 6.55e4·4-s + 3.90e5·5-s − 2.04e6·6-s + 2.54e7·7-s − 1.67e7·8-s − 6.50e7·9-s − 1.00e8·10-s − 2.81e8·11-s + 5.24e8·12-s − 1.52e9·13-s − 6.52e9·14-s + 3.12e9·15-s + 4.29e9·16-s + 5.46e10·17-s + 1.66e10·18-s + 6.88e8·19-s + 2.56e10·20-s + 2.03e11·21-s + 7.19e10·22-s + 3.91e11·23-s − 1.34e11·24-s + 1.52e11·25-s + 3.90e11·26-s − 1.55e12·27-s + 1.66e12·28-s + ⋯
L(s)  = 1  − 0.707·2-s + 0.704·3-s + 0.5·4-s + 0.447·5-s − 0.498·6-s + 1.66·7-s − 0.353·8-s − 0.503·9-s − 0.316·10-s − 0.395·11-s + 0.352·12-s − 0.518·13-s − 1.18·14-s + 0.314·15-s + 0.250·16-s + 1.90·17-s + 0.356·18-s + 0.00930·19-s + 0.223·20-s + 1.17·21-s + 0.279·22-s + 1.04·23-s − 0.249·24-s + 0.200·25-s + 0.366·26-s − 1.05·27-s + 0.834·28-s + ⋯

Functional equation

\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s) \, L(s)\cr =\mathstrut & \, \Lambda(18-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 10 ^{s/2} \, \Gamma_{\C}(s+17/2) \, L(s)\cr =\mathstrut & \, \Lambda(1-s) \end{aligned}\]

Invariants

Degree: \(2\)
Conductor: \(10\)    =    \(2 \cdot 5\)
Sign: $1$
Analytic conductor: \(18.3222\)
Root analytic conductor: \(4.28044\)
Motivic weight: \(17\)
Rational: no
Arithmetic: yes
Character: Trivial
Primitive: yes
Self-dual: yes
Analytic rank: \(0\)
Selberg data: \((2,\ 10,\ (\ :17/2),\ 1)\)

Particular Values

\(L(9)\) \(\approx\) \(2.156261583\)
\(L(\frac12)\) \(\approx\) \(2.156261583\)
\(L(\frac{19}{2})\) not available
\(L(1)\) not available

Euler product

   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
$p$$F_p(T)$
bad2 \( 1 + 256T \)
5 \( 1 - 3.90e5T \)
good3 \( 1 - 8.00e3T + 1.29e8T^{2} \)
7 \( 1 - 2.54e7T + 2.32e14T^{2} \)
11 \( 1 + 2.81e8T + 5.05e17T^{2} \)
13 \( 1 + 1.52e9T + 8.65e18T^{2} \)
17 \( 1 - 5.46e10T + 8.27e20T^{2} \)
19 \( 1 - 6.88e8T + 5.48e21T^{2} \)
23 \( 1 - 3.91e11T + 1.41e23T^{2} \)
29 \( 1 - 5.12e12T + 7.25e24T^{2} \)
31 \( 1 + 7.31e10T + 2.25e25T^{2} \)
37 \( 1 + 6.81e12T + 4.56e26T^{2} \)
41 \( 1 + 5.76e13T + 2.61e27T^{2} \)
43 \( 1 - 7.57e13T + 5.87e27T^{2} \)
47 \( 1 + 4.60e13T + 2.66e28T^{2} \)
53 \( 1 - 6.58e14T + 2.05e29T^{2} \)
59 \( 1 + 2.98e14T + 1.27e30T^{2} \)
61 \( 1 - 8.50e14T + 2.24e30T^{2} \)
67 \( 1 + 6.12e15T + 1.10e31T^{2} \)
71 \( 1 - 5.41e14T + 2.96e31T^{2} \)
73 \( 1 + 7.16e15T + 4.74e31T^{2} \)
79 \( 1 - 5.45e15T + 1.81e32T^{2} \)
83 \( 1 + 3.64e15T + 4.21e32T^{2} \)
89 \( 1 - 6.81e14T + 1.37e33T^{2} \)
97 \( 1 + 1.20e17T + 5.95e33T^{2} \)
show more
show less
   \(L(s) = \displaystyle\prod_p \ \prod_{j=1}^{2} (1 - \alpha_{j,p}\, p^{-s})^{-1}\)

Imaginary part of the first few zeros on the critical line

−16.91331647796161257372432449623, −14.92114101550407849727475476248, −14.06847169365456172570887139250, −11.86821136002649854971542806552, −10.32654301785782703697713516185, −8.670268548833463173601824657424, −7.66158257804266450132459066986, −5.26730866841669086707818893707, −2.72388181303130273758290534286, −1.25154400183761327838886927625, 1.25154400183761327838886927625, 2.72388181303130273758290534286, 5.26730866841669086707818893707, 7.66158257804266450132459066986, 8.670268548833463173601824657424, 10.32654301785782703697713516185, 11.86821136002649854971542806552, 14.06847169365456172570887139250, 14.92114101550407849727475476248, 16.91331647796161257372432449623

Graph of the $Z$-function along the critical line